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Introduction:

Why do we need a course in Financial 

Econometrics?
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Syllabus: Motivation

The past few decades have been characterized by an 

extraordinary growth in the use of quantitative methods in the 

analysis of various asset classes; be it equities, fixed income 

securities, commodities, and derivatives.

In addition, financial economists have routinely been using 

advanced mathematical, statistical, and econometric techniques 

in a host of applications including investment decisions, risk 

management, volatility modeling, interest rate modeling, and the 

list goes on. 
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Syllabus: Objectives

 This course attempts to provide a fairly deep understanding of 

such techniques.

The purpose is twofold, to provide research tools in financial 

economics and comprehend investment designs employed by 

practitioners.

The course is intended for advanced master and PhD level 

students in finance and economics. 

Professor Doron Avramov, Financial Econometrics4



Syllabus: Prerequisite

I will assume prior exposure to matrix algebra, distribution 

theory, Ordinary Least Squares, Maximum Likelihood 

Estimation, Method of Moments, and the Delta Method.

I will also assume you have some skills in computer 

programing beyond Excel.

MATLAB and R are the most recommended for this course. OCTAVE 

could be used as well, as it is a free software, and is practically 

identical to MATLAB when considering the scope of the course.

If you desire to use STATA, SAS, or other comparable tools, please 

consult with the TA.
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Syllabus: Grade Components

Assignments (36%): there will be two problem sets during the 

term. You can form study groups to prepare the assignments -

up to three students per group.  The assignments aim to 

implement key concepts studied in class.

Class Participation (14%) - Attending all sessions is mandatory 

for getting credit for this course. 

Final Exam (50%): based on class material, handouts, 

assignments, and readings.
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Syllabus: Topics to be Covered - #1

Overview: 

Matrix algebra 

Regression analysis 

Law of iterated expectations 

Variance decomposition

Taylor approximation

Distribution theory

Hypothesis testing

OLS

MLE
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Syllabus: Topics to be Covered - #2

Time-series tests of asset pricing models 

The mathematics of the mean-variance frontier

Estimating expected asset returns

Estimating the covariance matrix of asset returns

Forming mean variance efficient portfolio, the Global 

Minimum Volatility Portfolio, and the minimum Tracking 

Error Volatility Portfolio.
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Syllabus: Topics to be Covered - #3

The Sharpe ratio: estimation and distribution

The Delta method

The Black-Litterman approach for estimating expected 

returns.  

Principal component analysis.
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Syllabus: Topics to be Covered - #4

Risk management and downside risk measures:

value at risk, shortfall probability, expected shortfall (also 

known as C-VaR), target semi-variance, downside beta, and 

drawdown.

Option pricing: testing the validity of the B&S formula 

Model verification based on failure rates
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Syllabus: Topics to be Covered - #5

Predicting asset returns using time series regressions

The econometrics of back-testing

Understanding time varying volatility models including ARCH, 

GARCH, EGARCH, stochastic volatility, implied volatility 

(VIX), and realized volatility
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Session #1 – Overview
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Let us Start

This session is mostly an overview. Major contents: 

 Why do we need a course in financial econometrics?

 Normal, Bivariate normal, and multivariate normal densities

 The Chi-squared, F, and Student t distributions 

 Regression analysis

 Basic rules and operations applied to matrices 

 Iterated expectations and variance decomposition
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Financial Econometrics

In previous courses in finance and economics you had mastered 

the concept of the efficient frontier.

A portfolio lying on the frontier is the highest expected return 

portfolio for a given volatility target.

Or it is the lowest volatility portfolio for a given expected 

return target.
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Plotting the Efficient Frontier
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However, how could you 

Practically Form an Efficient Portfolio?

Problem: there are far TOO many parameters to estimate. 

For instance, investing in ten assets requires:

𝜇1
𝜇2
.
.

𝜇10

𝜎1
2. . . . . . . . . . . . 𝜎1,10
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2. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
𝜎1,10. . . . . . . . . . . 𝜎10

2

which is about ten estimates for expected return, ten for volatility, 

and 45 for co-variances/correlations. 

Overall, 65 estimates are required. 

That is a lot given the limited amount of data. 
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More generally, 

if there are N investable assets, you need:

N estimates for means,

N estimates for volatilities,

0.5N(N-1) estimates for correlations.

Overall: 2N+0.5N(N-1) estimates are required!

Mean, volatility, and correlation estimates are noisy as reflected 
through their standard errors. 

Beyond such parameter uncertainty there is also model 
uncertainty.

It is about the uncertainty about the correct model underlying 
the evolution of expected returns, volatilities, and correlations. 
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Sample Mean and Volatility

The volatility estimate is typically less noisy than the mean 

estimate (more later). 

Consider T asset return observations:

𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑇

When returns are IID, the mean and volatility are estimated as

ത𝑅 =
σ𝑡=1
𝑇 𝑅𝑡
𝑇

Less Noise ⟶ ො𝜎 =
σ𝑡=1
𝑇 𝑅𝑡 − ത𝑅 2

𝑇 − 1
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Estimation Methods

One of the ideas here is to introduce various methods in which 

to estimate the comprehensive set of parameters.

We will discuss asset pricing models and the Black-Litterman 

approach for estimating expected returns.

We will further introduce several methods for estimating the 

large-scale covariance matrix of asset returns.
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Mean-Variance vs. Down Side Risk

We will comprehensively cover topics in mean variance 

analysis. 

We will also depart from the mean variance paradigm and 

consider down side risk measures to form as well as evaluate 

investment strategies.

Why should one resort to down side risk measures? 
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Down Side Risk

For one, investors typically assign higher weight to the 

downside risk of investments than to upside potential.

The practice of risk management as well as regulations of 

financial institutions are typically about downside risk – such 

as VaR, shortfall probability, and expected shortfall.

Moreover, there is a major weakness embedded in the mean 

variance paradigm.
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Drawback in the Mean-Variance Setup

To illustrate, consider two risky assets (be it stocks) A and B.

There are five states of nature in the economy.

Returns in the various states are described on the next page.
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Drawback in Mean-Variance

Stock A dominates stock B in every state of nature.

Nevertheless, a mean-variance investor may consider stock B 

because it may reduce the portfolio’s volatility.

Investment criteria based on down size risk measures could get 

around this weakness.

S1 S2 S3 S4 S5

A 5.00% 8.25% 15.00% 10.50% 20.05%

B 3.05% 2.90% 2.95% 3.10% 3.01%
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The Normal Distribution

In various applications in finance and economics, a common 
assumption is that quantities of interests, such as asset 
returns, economic growth, dividend growth, interest rates, etc., 
are normally (or log-normally) distributed.

The normality assumption is primarily done for analytical 
tractability.

The normal distribution is symmetric.

It is characterized by the mean and the variance.
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Dispersion around the Mean

Assuming that 𝑥 is a zero mean random variable.

As 𝑥~𝑁(0, 𝜎2) the distribution takes the form:

When 𝜎 is small (big) the distribution is concentrated (dispersed)
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Probability Distribution Function

The Probability Density Function (pdf) of the normal 

distribution for a random variable r takes the form

𝑝𝑑𝑓 𝑟 =
1

2𝜋𝜎2
𝑒𝑥𝑝 −

1

2

𝑟 − 𝜇 2

𝜎2

Note that 𝑝𝑑𝑓 𝜇 =
1

2𝜋𝜎2
, and further  

if 𝜎 = 1, then 𝑝𝑑𝑓 𝜇 =
1

2𝜋

The Cumulative Density Function (CDF) is the integral of the 

pdf, e. g. , 𝑐𝑑𝑓 𝜇 = 0.5.
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Probability Integral Transform  

Assume that x is normally distributed – what is the 

distribution of y=F(x), where F is a cumulative density 

Function?

Could one make a general statement here? 
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Normally Distributed Return

Assume that the US excess rate of return on the market 

portfolio is normally distributed with annual expected return 

(equity premium) and volatility given by 8% and 20%, 

respectively.

That is to say that with a nontrivial probability the realized 

return can be negative. See figures on the next page.

The distribution around the sample mean return is also normal 

with the same expected return but smaller volatility. 
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Confidence Level

Normality suggests that deviation of 2 SD away from the mean 

creates an 80% range (from -32% to 48%) for the realized return 

with approx. 95% confidence level (assuming 𝑟~𝑁(8%, (20%)2)
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Confidence Intervals for 

Annual  Excess Return on the Market

𝑃𝑟𝑜𝑏 0.08 − 0.2 < 𝑅 < 0.08 + 0.2 = 68%
𝑃𝑟𝑜𝑏 0.08 − 2 × 0.2 < 𝑅 < 0.08 + 2 × 0.2 = 95%
𝑃𝑟𝑜𝑏 0.08 − 3 × 0.2 < 𝑅 < 0.08 + 3 × 0.2 = 99%

The probability that the realization is negative

𝑃𝑟𝑜𝑏 𝑅 < 0 = 𝑃𝑟𝑜𝑏
𝑅−0.08

0.2
<

0−0.08

0.2
= 𝑃𝑟𝑜𝑏 𝑧 < −0.4 = 34.4%
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Higher Moments

Skewness – the third moment is zero.

Kurtosis – the fourth moment is three times the variance.

Odd moments are all zero.

Even moments are (often complex) functions of the mean and 
the variance. 

In the next slides, skewness and kurtosis are presented for 
other probability distribution functions.
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Skewness

The skewness can be negative (left tail) or positive (right tail).
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Kurtosis

Mesokurtic - A term used in a statistical context where the 

kurtosis of a distribution is similar, or identical, to the kurtosis of 

a normally distributed data set.
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The Essence of Skewness and Kurtosis

Positive skewness means nontrivial probability for large 

payoffs.

Kurtosis is a measure for how thick the distribution’s tails are. 

It can reflect the uncertainty about variation. 

 When is the skewness zero? In symmetric distributions.

Professor Doron Avramov, Financial Econometrics34



Bivariate Normal Distribution

 Bivariate normal:

𝑥
𝑦 ~𝑁

𝜇𝑥
𝜇𝑦

,
𝜎𝑥
2, 𝜎𝑥𝑦

𝜎𝑥𝑦 , 𝜎𝑦
2

The marginal densities of x and y are 

𝑥~𝑁 𝜇𝑥 , 𝜎𝑥
2

𝑦~𝑁 𝜇𝑦 , 𝜎𝑦
2

 What is the distribution of 𝑦 if 𝑥 is known? 
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Conditional Distribution

 The conditional distribution is still normal:

𝑦 ∣ 𝑥~𝑁 𝜇𝑦 +
𝜎𝑥𝑦

𝜎𝑥
2 𝑥 − 𝜇𝑥 , 𝜎𝑦

2 −
𝜎𝑥𝑦
2

𝜎𝑥
2

𝑎𝑙𝑤𝑎𝑦𝑠
𝑛𝑜𝑛−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

If the correlation between 𝑥 and 𝑦 is positive and 𝑥 > 𝜇𝑥 then 

the conditional expectation is higher than the unconditional 

one.
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Conditional Moments

If 𝑥 and 𝑦 are uncorrelated, then the conditional and 
unconditional expected return of 𝑦 are identical.

That is, if 𝜎𝑥𝑦 = 0, then 𝜎𝑦∣𝑥 = 𝜎𝑦
2 −

𝜎𝑥𝑦
2

𝜎𝑥
2 = 𝜎𝑦

meaning that the realization of 𝑥 does not say anything about 
the conditional distribution of 𝑦.

 It should be noted that random variables can be uncorrelated 
yet dependent. 

 Dependence can be represented by a copula. 

 Under normality, zero correlation and independence coincide. 
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Conditional Standard Deviation

Developing the conditional standard deviation further:

𝜎𝑦∣𝑥 = 𝜎𝑦
2 −

𝜎𝑥𝑦
2

𝜎𝑥
2 = 𝜎𝑦

2 1 −
𝜎𝑥𝑦
2

𝜎𝑥
2 ∙ 𝜎𝑦

2 = 𝜎𝑦 1 − 𝑅2

When goodness of fit is higher the conditional standard 

deviation is lower.

That makes a great sense: the realization of x gives substantial 

information about y. 
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Multivariate Normal

𝑋𝑚×1 =

𝑥1
𝑥2.
.
𝑥𝑚

~𝑁 𝜇𝑚×1, σ𝑚×𝑚

Define Z=AX+B.
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Multivariate Normal

𝑍 = 𝐴𝑛×𝑚 ∙ 𝑋𝑚×1 + 𝐵𝑛×1 ∼ 𝑁 𝐴𝑛×𝑚𝜇𝑚×1 + 𝐵𝑛×1, 𝐴𝑛×𝑚σ𝑚×𝑚𝐴𝑚×𝑛
′

Let us now make some transformations to end up with 𝑁(0, 𝐼):

𝑍 − 𝐴𝑛×𝑚𝜇𝑚×1 + 𝐵𝑛×1 ∼ 𝑁 0, 𝐴𝑛×𝑚σ𝑚×𝑚𝐴𝑚×𝑛
′

𝐴𝑛×𝑚σ𝑚×𝑚𝐴𝑚×𝑛
′ −

1
2 𝑍 − 𝐴𝑛×𝑚𝜇𝑚×1 − 𝐵𝑛×1 ∼ 𝑁 0, 𝐼
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Multivariate Normal

Consider an N-vector of stock returns which are normally 
distributed:

𝑅𝑁×1~𝑁 𝜇𝑁×1, Σ𝑁×𝑁

Then:

𝑅 − 𝜇~𝑁 0, Σ

Σ−
1
2 𝑅 − 𝜇 ~𝑁 0, 𝐼

What does σ−
1

2 mean?  A few rules: 

σ−
1

2 ∙ σ−
1

2 = σ−1

σ
1

2 ∙ σ
1

2 = σ

σ−
1

2 ∙ σ
1

2 = 𝐼
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The Chi-Squared Distribution

If  𝑋1~𝑁(0,1) then 𝑋1
2~𝜒2 1

If  𝑋1~𝑁 0,1 , 𝑋2~𝑁 0,1 , and 𝑋1 ⊥ 𝑋2 then

𝑋1
2 + 𝑋2

2~𝜒2 2
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More about the Chi-Squared 

Moreover if ൞
𝑋1~𝜒

2 𝑚

𝑋2~𝜒
2 𝑛

𝑋1 ⊥ 𝑋2

then 𝑋1 + 𝑋2~𝜒
2 𝑚 + 𝑛
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The F Distribution

Gibbons, Ross, and Shanken (GRS) designated a finite sample 

asset pricing test that has the F - Distribution.

The GRS test is one of the most well known and heavily used in 

the filed of asset pricing. 

To understand the F distribution notice that 

If  ൞
𝑋1~𝜒

2 𝑚

𝑋2~𝜒
2 𝑛

𝑋1 ⊥ 𝑋2

then 𝐴 =
ൗ𝑋1
𝑚

ൗ𝑋2
𝑛
~𝐹 𝑚, 𝑛
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The t Distribution

Suppose that 𝑟1, 𝑟2, … , 𝑟𝑇 is a sample of length T of stock returns 
which are normally distributed. 

The sample mean and variance are 

ҧ𝑟 =
𝑟1 +⋯+ 𝑟𝑇

𝑇
and 𝑠2 =

1

𝑇 − 1


𝑡=1

𝑇

𝑟𝑡 − ҧ𝑟 2

The following statistic has the t distribution with T-1 d.o.f

𝑡 =
ҧ𝑟 − 𝜇

ൗ
𝑠

𝑇 − 1
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The t Distribution

The pdf of student-t is given by:

𝑓 𝑥, 𝑣 =
1

𝑣 ∙ 𝐵 Τ𝑣 2 , Τ1 2
∙ 1 +

𝑥2

𝑣

−
𝑣+1
2

where 𝐵 𝑎, 𝑏 is beta function and 𝑣 ≥ 1 is the number of 

degrees of freedom
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The Student’s t Distribution

Professor Doron Avramov, Financial Econometrics47

𝜈 is the number of 

degrees of freedom.   

When 𝜈 = +∞ the t-

distribution becomes 
normal dist.



The t Distribution

The t-distribution is the sampling distribution of the t-value 

when the sample consist of independently and identically 

distributed observations from a normally distributed 

population.

It is obtained by dividing a normally distributed random 

variable by a square root of a Chi-squared distributed random 

variable when both random variables are independent. 

Indeed, later we will show that when returns are normally 

distributed the sample mean and variance are independent. 
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Regression Analysis

Various applications in corporate finance and asset pricing 

require the implementation of a regression analysis.

We will estimate regressions using matrix notation.

For instance, consider the time series predictive regression

𝑅𝑡 = 𝛼 + 𝛽1𝑍1,𝑡−1 + 𝛽2𝑍2,𝑡−1 + 𝜀𝑡 𝑡 = 1,2, … , 𝑇
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Rewriting the system in a matrix form

𝑅𝑇×1 =

𝑅1
𝑅2.
.
𝑅𝑇

𝑋𝑇×3 =

1, 𝑍1,0, 𝑍2,0
1, 𝑍1,1, 𝑍2,1

.

.
1, 𝑍1,𝑇−1, 𝑍2,𝑇−1

𝛾3×1 =

𝛼
𝛽1
𝛽2

𝜀𝑇×1=

𝜀1
𝜀2.
.
𝜀𝑇

yields

R= 𝑋𝛾 + 𝜀

We will derive regression coefficients and their standard errors 

using OLS, MLE, and Method of Moments.
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Vectors and Matrices: some Rules

 A  is a column vector: 𝐴𝑡×1 =

𝛼11
𝛼12.
.

𝛼1𝑡

 The transpose of A is a row vector: 𝐴′1×𝑡 = 𝛼11, 𝛼12, … , 𝛼1𝑡

 The identity matrix satisfies

𝐼 ∙ 𝐵 = 𝐵 ∙ 𝐼 = 𝐵
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Multiplication of Matrices

𝐴2×2 =
𝑎11,𝑎12
𝑎21,𝑎22

𝐵2×2 =
𝑏11,𝑏12
𝑏21,𝑏22

𝐴′2×2 =
𝑎11,𝑎21
𝑎12,𝑎22

𝐴2×2𝐵2×2 =
𝑎11𝑏11 + 𝑎12𝑏21,𝑎11𝑏12 + 𝑎12𝑏22
𝑎21𝑏11 + 𝑎22𝑏21,𝑎21𝑏12 + 𝑎22𝑏22

,
(𝐴𝐵)′ = 𝐵′𝐴′

(𝐴𝐵)−1 = 𝐵−1𝐴−1 ∗

The inverse of the matrix 𝐴 is 𝐴−1 which satisfies:

𝐴2×2𝐴2×2
−1 = 𝐼 =

1,0
0,1

* Both A and B are invertible
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Solving Large Scale Linear Equations

𝐴𝑚×𝑚𝑋𝑚×1 = 𝑏𝑚×1

𝑋 = 𝐴−1𝑏

Of course, A has to be a square invertible matrix. That is, the 

number of equations must be equal to the number of unknowns 

and further all equations must be linearly independent. 
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Linear Independence and Norm

The vectors 𝑉1, … , 𝑉𝑁 are linearly independent if there does not 

exist scalars 𝑐1, … , 𝑐𝑁 such that

𝑐1𝑉1 + 𝑐2𝑉2 +⋯+ 𝑐𝑁𝑉𝑁 = 0
unless 𝑐1 = 𝑐2… = 𝑐𝑁 = 0. 

In the context of financial economics – we will consider N risky 

assets such that the payoff of each asset is not a linear 

combination of the other N-1 assets. 

Then the covariance matrix of asset returns is positive definite 

(see next page) of rank N and hence is invertible. 

The norm of a vector V is

𝑉 = 𝑉′𝑉
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A Positive Definite Matrix

An 𝑁 × 𝑁 matrix σ is called positive definite if

𝑉′
1×𝑁

⋅ σ
𝑁×𝑁

⋅ �
𝑁×1

>0

for any nonzero vector V.

Such matrix is invertible and it has N distinct Eigen-values 
and Eigen-vectors.

A non-positive definite matrix cannot be inverted and its 
determinant is zero.
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The Trace of a Matrix

Let σ
𝑁×𝑁

=

𝜎1
2……………𝜎1,𝑁

𝜎1,2, 𝜎2
2……………

……………………
𝜎𝑁,1,……………𝜎𝑁

2

= σ 1

𝑁×1
, … , σ 𝑁

𝑁×1

Trace of a matrix is the sum of diagonal elements

𝑡𝑟 σ = 𝜎1
2 + 𝜎2

2 +⋯+ 𝜎𝑁
2
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Matrix Vectorization

𝑉𝑒𝑐
𝑁2×1

σ =

𝜎 1

𝜎 2

⋮
𝜎 𝑁

This is the vectorization operator –

it works for both square as well as 

non square matrices. 
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The VECH Operator

Similar to 𝑉𝑒𝑐 σ but takes only the upper triangular 

elements of σ. 

𝑉𝑒𝑐ℎ
𝑁+1 𝑁
2 ×1

σ =

𝜎1
1

𝜎2
2

⋮
𝜎2𝑁
⋮
𝜎𝑁
2
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Partitioned Matrices

A, a square nonsingular matrix, is partitioned as

𝐴 =

𝐴11
𝑚1×𝑚1

, 𝐴12
𝑚1×𝑚2

𝐴21
𝑚2×𝑚1

, 𝐴22
𝑚2×𝑚2

Then the inverse of A is given by

𝐴−1 =
𝐴11 − 𝐴12𝐴22

−1𝐴21
−1
, − 𝐴11 − 𝐴12𝐴22

−1𝐴21
−1
𝐴12𝐴22

−1

−𝐴22
−1𝐴21 𝐴11 − 𝐴12𝐴22

−1𝐴21
−1
, (𝐴22−𝐴21𝐴11

−1𝐴12)
−1

Confirm that 𝐴 ⋅ 𝐴−1 = 𝐼 𝑚1+𝑚2
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Matrix Differentiation

Y is an M-vector. X is an N-vector. Then 

𝜕𝑌

𝜕𝑋
𝑀×𝑁

=

𝜕𝑌1
𝜕𝑋1

,
𝜕𝑌1
𝜕𝑋2

, … ,
𝜕𝑌1
𝜕𝑋𝑁

⋮
𝜕𝑌𝑀
𝜕𝑋1

,
𝜕𝑌𝑀
𝜕𝑋2

, … ,
𝜕𝑌𝑀
𝜕𝑋𝑁

And specifically, if

𝑌
𝑀×1

= 𝐴
𝑀×𝑁

𝑋
𝑁×1

Then:
𝜕𝑌

𝜕𝑋
= 𝐴
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Matrix Differentiation

Let 𝑍 = 𝑌′
1×𝑀

𝐴
𝑀×𝑁

𝑋
𝑁×1

𝜕𝑍

𝜕𝑋
= 𝑌′𝐴

𝜕𝑍

𝜕𝑌
= 𝑋′𝐴′
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Matrix Differentiation

Let

𝜃 = 𝑋′

1×𝑁
𝐶

𝑁×𝑁
𝑋

𝑁×1
𝜕𝜃

𝜕𝑋
= 𝑋′ 𝐶 + 𝐶′

If C is symmetric, then 
𝜕𝜃

𝜕𝑋
= 2𝑋′𝐶
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Kronecker Product

It is given by

𝐶𝑛𝑝×𝑚𝑔 = 𝐴𝑛×𝑚 ⊗𝐵𝑝×𝑔

𝐶𝑛𝑝×𝑚𝑔 =
𝑎11𝐵…………… , 𝑎1𝑚𝐵
………………………

𝑎𝑛1𝐵…………… , 𝑎𝑛𝑚𝐵
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Kronecker Product

For square matrices A and B, the following equalities apply 

𝐴⊗ 𝐵 −1 = 𝐴−1 ⊗𝐵−1

𝐴𝑀×𝑀 ⊗𝐵𝑁×𝑁 = 𝐴 𝑀 𝐵 𝑁

𝐴⊗ 𝐵 𝐶 ⊗𝐷 = 𝐴𝐶 ⊗ 𝐵𝐷
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Operations on Matrices: More Advanced

𝑡𝑟(𝐴 ⊗ 𝐵) = 𝑡𝑟(𝐴)𝑡𝑟(𝐵)

𝑣𝑒𝑐(𝐴 + 𝐵) = 𝑣𝑒𝑐(𝐴) + 𝑣𝑒𝑐(𝐵)

𝑣𝑒𝑐ℎ(𝐴 + 𝐵) = 𝑣𝑒𝑐ℎ(𝐴) + 𝑣𝑒𝑐ℎ(𝐵)

𝑡𝑟(𝐴𝐵) = 𝑣𝑒𝑐(𝐵′)′𝑣𝑒𝑐(𝐴)

𝐸(𝑋′𝐴𝑋) = 𝐸 𝑡𝑟(𝑋′𝐴𝑋)

= 𝐸 𝑡𝑟(𝑋𝑋′)𝐴 = 𝑡𝑟 𝐸(𝑋𝑋′)𝐴 = 𝜇′𝐴𝜇 + 𝑡𝑟(Σ𝐴)

where

𝜇 = 𝐸 𝑋 and Σ = 𝐸(𝑋 − 𝜇)(𝑋 − 𝜇)′

Professor Doron Avramov, Financial Econometrics65



Using Matrix Notation 
in a Portfolio Choice Context

The expectation and the variance of a portfolio’s rate of return in the 

presence of three stocks are formulated as

𝜇𝑝 = 𝜔1𝜇1 + 𝜔2𝜇2 + 𝜔3𝜇3 = 𝜔′𝜇

𝜎𝑝
2 = 𝜔1

2𝜎1
2 +𝜔2

2𝜎2
2 + 𝜔3

2𝜎3
2

+2𝜔1𝜔2𝜎1𝜎2𝜌12 + 2𝜔1𝜔3𝜎1𝜎3𝜌13 + 2𝜔2𝜔3𝜎2𝜎3𝜌23

= 𝜔′σ𝜔
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Using Matrix Notation 

in a Portfolio Choice Context

where

𝜇3×1 =

𝜇1
𝜇2
𝜇3

𝜔3×1 =

𝜔1

𝜔2

𝜔3

σ
3×3

=

𝜎1
2, 𝜎12, 𝜎13

𝜎21, 𝜎2
2, 𝜎23

𝜎31, 𝜎32, 𝜎3
2
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The Expectation, Variance, and Covariance of

Sum of Random Variables

𝐸(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧) = 𝑎𝐸(𝑥) + 𝑏𝐸(𝑦) + 𝑐𝐸(𝑧)

𝑉𝑎𝑟 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑎2𝑉𝑎𝑟 𝑥 + 𝑏2𝑉𝑎𝑟 𝑦 + 𝑐2𝑉𝑎𝑟 𝑧
+2𝑎𝑏𝐶𝑜𝑣(𝑥, 𝑦) + 2𝑎𝑐𝐶𝑜𝑣(𝑥, 𝑧) + 2𝑏𝑐𝐶𝑜𝑣(𝑦, 𝑧)

𝐶𝑜𝑣 𝑎𝑥 + 𝑏𝑦, 𝑐𝑧 + 𝑑𝑤 = 𝑎𝑐𝐶𝑜𝑣 𝑥, 𝑧 + 𝑎𝑑𝐶𝑜𝑣 𝑥, 𝑤
+𝑏𝑐𝐶𝑜𝑣(𝑦, 𝑧) + 𝑏𝑑𝐶𝑜𝑣(𝑦, 𝑤)
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Law of Iterated Expectations (LIE)

The LIE relates the unconditional expectation of a random 

variable to its conditional expectation via the formulation

𝐸 𝑌 = 𝐸𝑥 𝐸 𝑌 ∣ 𝑋

Paul Samuelson shows the relation between the LIE and the 

notion of market efficiency – which loosely speaking asserts 

that the change in asset prices cannot be predicted using 

current information.
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LIE and Market Efficiency

Under rational expectations, the time t security price can be 

written as the rational expectation of some fundamental value, 

conditional on information available at time t: 

𝑃𝑡 = 𝐸 𝑃∗|𝐼𝑡 = 𝐸𝑡[𝑃
∗]

 Similarly, 𝑃𝑡+1 = 𝐸 𝑃∗|𝐼𝑡+1 = 𝐸𝑡+1[𝑃
∗]

 The conditional expectation of the price change is 

𝐸[𝑃𝑡+1 − 𝑃𝑡|𝐼𝑡] = 𝐸𝑡 𝐸𝑡+1[𝑃
∗] − 𝐸𝑡[𝑃

∗] = 0

 The quantity does not depend on the information. 
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Variance Decomposition (VD)

 𝑉𝑎𝑟 𝑦 can be represented as the sum of two components:

𝑉𝑎𝑟 𝑦 = 𝑉𝑎𝑟𝑥 𝐸 𝑦|𝑥 + 𝐸𝑥 𝑉𝑎𝑟 𝑦|𝑥

Shiller (1981) documents excess volatility in the equity market. 
We can use VD to prove it:

 The theoretical stock price: 𝑃𝑡
∗ =

𝐷𝑡+1

1+𝑟
+

𝐷𝑡+2

1+𝑟 2⋯

based on actual future dividends

 The actual stock price: 𝑃𝑡 = 𝐸 𝑃𝑡
∗ ∣ 𝐼𝑡
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Variance Decomposition

𝑉𝑎𝑟 𝑃𝑡
∗ = 𝑉𝑎𝑟 𝐸 𝑃𝑡

∗ ∣ 𝐼𝑡 + 𝐸 𝑉𝑎𝑟 𝑃𝑡
∗ ∣ 𝐼𝑡

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑉𝑎𝑟 𝑃𝑡
∗ = 𝑉𝑎𝑟 𝑃𝑡 + 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

↓
𝑉𝑎𝑟 𝑃𝑡

∗ > 𝑉𝑎𝑟 𝑃𝑡

By variance decomposition, the variance of the theoretical price must 

be higher than that of the actual price. 

Data, however, implies the exact opposite. 

Either the present value formula (with constant discount factors) is 

away off, or asset prices are subject to behavioral biases. 
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Session 2(part a) - Taylor Approximations in 

Financial Economics
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TA in Finance

Several major applications in finance require the use of Taylor 

series approximation.

The following table describes three applications.
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TA in Finance: Major Applications

Expected Utility Bond Pricing Option Pricing

First Order Mean   Duration Delta

Second Order Volatility Convexity Gamma

Third Order Skewness

Fourth Order Kurtosis 
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Taylor Approximation

Taylor series is a representation of a function as an infinite sum of 
terms that are calculated from the values of the function's 
derivatives at a single point.

 Taylor approximation is written as:  

𝑓 𝑥 = 𝑓 𝑥0 +
1

1!
𝑓′ 𝑥0 𝑥 − 𝑥0 +

+
1

2!
𝑓′′ 𝑥0 𝑥 − 𝑥0

2 +
1

3!
𝑓′′′ 𝑥0 𝑥 − 𝑥0

3 +⋯

 It can also be written with σ notation:

𝑓(𝑥) =
𝑛=0

∞ 𝑓𝑛(𝑥0)

𝑛!
𝑥 − 𝑥0

𝑛
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Maximizing Expected Utility of Terminal Wealth

The invested wealth is 𝑊𝑇, the investment horizon is 𝐾 periods. 

The terminal wealth, the wealth in the end of the investment 

horizon, is

𝑊𝑇+𝐾 = 𝑊𝑇 1 + 𝑅

where

1 + 𝑅 = 1 + 𝑅𝑇+1 1 + 𝑅𝑇+2 … 1 + 𝑅𝑇+𝐾

Applying “ln” on both sides of the equation:

ln 1 + 𝑅 = ln 1 + 𝑅𝑇+1 1 + 𝑅𝑇+2 … 1 + 𝑅𝑇+𝐾 =

= ln 1 + 𝑅𝑇+1 + ln 1 + 𝑅𝑇+2 +⋯+ ln 1 + 𝑅𝑇+𝐾
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Transforming to Log Returns

 Denote the log returns as:
𝑟𝑇+1 = ln ( 1 + 𝑅𝑇+1)
𝑟𝑇+2 = ln ( 1 + 𝑅𝑇+2)

. . . . .
𝑟𝑇+𝐾 = ln ( 1 + 𝑅𝑇+𝐾)

And:

𝑟 = ln ( 1 + 𝑅)
ent horizon is:

2 +⋯+ 𝑟𝑇+𝐾

R is therefore:

𝑇exp ( 𝑟)
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Power utility as a Function of Cumulative Log 

Return (CLR)

Assume that the investor has the power utility function (where 

0 < 𝛾 < 1):

𝑢 𝑊𝑇+𝐾 =
1

𝛾
𝑊𝑇+𝐾

𝛾

Then the utility function of the terminal wealth can be 

expressed as a function of CLR

𝑢 𝑊𝑇+𝐾 =
1

𝛾
𝑊𝑇+𝑘

𝛾
=
1

𝛾
𝑊𝑇 exp ( 𝑟)

𝛾 =
1

𝛾
𝑊𝑇

𝛾 exp ( 𝛾𝑟)
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Power utility as a Function of Cumulative Log 

Return

Note that 𝑟 is stochastic (unknown), since all future returns 

are unknown

We can use the Taylor Approximation to express the utility as 

a function of the moments of CLR.
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The Utility Function Approximation

𝑢(𝑊𝑇+𝐾) =
𝑊𝑇

𝛾

𝛾
exp ( 𝜇𝛾) +

𝑊𝑇
𝛾

𝛾
exp ( 𝜇𝛾)(𝑟 − 𝜇)𝛾 +

1

2

𝑊𝑇
𝛾

𝛾
exp ( 𝜇𝛾)(𝑟 − 𝜇)2𝛾2 +

1

6

𝑊𝑇
𝛾

𝛾
exp ( 𝜇𝛾)(𝑟 − 𝜇)3𝛾3 +

1

24

𝑊𝑇
𝛾

𝛾
exp ( 𝜇𝛾)(𝑟 − 𝜇)4𝛾4 +⋯

And the expected value of 𝑢(𝑊𝑇+𝐾) is:

𝐸[𝑢(𝑊𝑇+𝐾)] ≈
𝑊𝑇

𝛾

𝛾
exp ( 𝜇𝛾)[1 +

1

2
𝑉𝑎𝑟(𝑟)𝛾2 +

1

6
𝑆𝑘𝑒(𝑟)𝛾3 +

1

24
𝐾𝑢𝑟(𝑟)𝛾4]
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Expected Utility

Let us assume that log return is normally distributed:

𝑟~𝑁 𝜇, 𝜎2 𝑆𝑘𝑒 = 0, 𝐾𝑢𝑟 = 3𝜎4

Then:

𝐸 𝑢 𝑊𝑇+𝐾 ≈
𝑊𝑇

𝛾

𝛾
exp ( 𝛾𝜇) 1 +

𝛾2

2
𝜎2 +

𝛾4

8
𝜎4

The exact solution under normality is

𝐸 𝑢 𝑊𝑇+𝐾 =
𝑊𝑇

𝛾

𝛾
exp 𝛾𝜇 +

𝛾2

2
𝜎2

Are approximated and exact solutions close enough?  
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Taylor Approximation – Bond Pricing

Taylor approximation is also used in bond pricing.

The bond price is: 𝑃 𝑦0 = σ𝑖=1
𝑛 𝐶𝐹𝑖

1+𝑦0
𝑖 where 𝑦0 is the yield to 

maturity.

Assume that 𝑦0 changes to 𝑦1

The delta (change) of the yield to maturity is written as:

Δ𝑦 = 𝑦1 − 𝑦0
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Changes in Yields and Bond Pricing

Using Taylor approximation we get:

𝑃 𝑦1 ≈ 𝑃 𝑦0 +
1

1!
𝑃′ 𝑦0 𝑦1 − 𝑦0 +

1

2!
𝑃′′ 𝑦0 𝑦1 − 𝑦0

2

Therefore:

𝑃 𝑦1 − 𝑃 𝑦0 ≈
1

1!
𝑃′ 𝑦0 𝑦1 − 𝑦0 +

1

2!
𝑃′′ 𝑦0 𝑦1 − 𝑦0

2 ≈

≈ 𝑃′ 𝑦0 ∆𝑦 + 1
2𝑃

′′ 𝑦0 ∙ ∆𝑦 2
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Duration and Convexity

Denote 𝑃 = 𝑃 𝑦0 . Dividing by 𝑃(𝑦0) yields

∆𝑃

𝑃
≈
𝑃′ 𝑦0 ∙ ∆𝑦

𝑃 𝑦0
+
𝑃′′ 𝑦0 ∙ ∆𝑦 2

2𝑃 𝑦0

Instead of: 
𝑃′ 𝑦0

𝑃 𝑦0
we can write “-MD” (Modified Duration).

Instead of: 
𝑃′′ 𝑦0

𝑃 𝑦0
we can write “Con” (Convexity).
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The Approximated Bond Price Change

It is given by

∆𝑃

𝑃
≈ −𝑀𝐷 ∙ ∆𝑦 +

𝐶𝑜𝑛 ∙ ∆𝑦2

2

 What if the yield to maturity falls? 
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The Bond Price Change when Yields Fall

The change of the bond price is: 

∆𝑃

𝑃
= −𝑀𝐷 ∙ ∆𝑦 +

𝐶𝑜𝑛 ∙ ∆𝑦2

2

 According to duration - bond price should increase.

 According to convexity - bond price should also increase.

 The bond price clearly rises.
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The Bond Price Change when Yields Increase

And what if the yield to maturity increases?

Again, the change of the bond price is

∆𝑃

𝑃
= −𝑀𝐷 ∙ ∆𝑦 +

𝐶𝑜𝑛 ∙ ∆𝑦2

2

 According to duration – the bond price should decrease.
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The Bond Price Change when Yields Increase

According to convexity – the bond price should increase.

What is the overall effect?

 The influence of duration is always stronger than that of 

convexity as the duration is a first order effect while the 

convexity is only second order. 

So the bond price must fall.
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Option Pricing

A call price is a function of the underlying asset price.

What is the change in the call price when the underlying asset 

pricing changes?

𝐶(𝑃𝑠) ≈ 𝐶(𝑃𝑡) +
𝜕𝐶

𝜕𝑃
𝑃𝑠 − 𝑃𝑡 +

1

2

𝜕2𝐶

𝜕𝑃2
𝑃𝑠 − 𝑃𝑡

2

≈ 𝐶(𝑃𝑡) + Δ 𝑃𝑠 − 𝑃𝑡 +
1

2
Γ 𝑃𝑠 − 𝑃𝑡

2

Focusing on the first order term – this establishes the delta 

neutral trading strategy. 
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Delta Neutral Strategy

Suppose that the underlying asset volatility increases.

Suppose further that the implied volatility lags behind.

The call option is then underpriced – buy the call. 

However, you take the risk of fluctuations in the price of the 

underlying asset.

To hedge that risk you sell Delta units of the underlying asset.

The same applies to trading strategies involving put options. 
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Session 2(part b) - OLS, MLE, MOM
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Ordinary Least Squares (OLS)

 The goal is to estimate the regression parameters (least squares)

 Consider the regression 𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝜀𝑡 and assume homoskedasticity:

𝑌 =

𝑦1
.
𝑦𝑇

, 𝑋 =
1, 𝑥11, … , 𝑥𝐾1
……………
1, 𝑥1𝑇 , … , 𝑥𝐾𝑇

, 𝑉 =

𝜀1
.
𝜀𝑇

 Expressing in a matrix form:
𝑌 = 𝑋𝛽 + 𝑉

 Or:
V= 𝑌 − 𝑋𝛽

 Define a function of the squares of the errors that we want to minimize:

𝑓 𝛽 =

𝑡=1

𝑇

𝜀𝑡
2 = 𝑉′𝑉 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 = 𝑌′𝑌 + 𝛽′𝑋′𝑋𝛽 − 2𝛽′𝑋′𝑌

Professor Doron Avramov, Financial Econometrics93



OLS First Order Conditions

Let us differentiate the function with respect to beta and 

consider the first order condition: 

𝜕𝑓 𝛽

𝜕𝛽
= 2(𝑋′𝑋)𝛽 − 2𝑋′𝑌 = 0

𝑋′𝑋 𝛽 = 𝑋′𝑌

⇒ መ𝛽 = (𝑋′𝑋)−1𝑋′𝑌

Recall: X and Y are observations.

Could we choose other 𝛽 to obtain smaller 𝑉′𝑉 = σ𝑡=1
𝑇 𝜀𝑡

2 ?
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The OLS Estimator

No as we minimize the quantity 𝑉′𝑉.

We know: 𝑌 = 𝑋𝛽 + 𝑉 → መ𝛽 = (𝑋′𝑋)−1𝑋′(𝑋𝛽 + 𝑉)
መ𝛽 = (𝑋′𝑋)−1𝑋′𝑋𝛽 + (𝑋′𝑋)−1𝑋′𝑉
መ𝛽 = 𝛽 + (𝑋′𝑋)−1𝑋′𝑉

Is the estimator መ𝛽 unbiased for 𝛽 ?

𝐸 መ𝛽 − 𝛽

= 𝐸 (𝑋′𝑋)−1𝑋′𝑉

= (𝑋′𝑋)−1𝑋′𝐸 𝑉 = 0 ,  So – it is indeed unbiased.
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The Standard Errors of the OLS Estimates

What about the Standard Error of 𝛽?

σ𝛽 = 𝐸 መ𝛽 − 𝛽 መ𝛽 − 𝛽
′

Reminder: 

መ𝛽 − 𝛽 = (𝑋′𝑋)−1𝑋′𝑉

መ𝛽 − 𝛽
′
= 𝑉′𝑋(𝑋′𝑋)−1
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The Standard Errors of the OLS Estimates

Continuing:

σ𝛽 = 𝐸 (𝑋′𝑋)−1𝑋′𝑉𝑉′𝑋(𝑋′𝑋)−1 =

(𝑋′𝑋)−1𝑋′ 𝐸 𝑉𝑉′

𝐴 𝑠𝑐𝑎𝑙𝑎𝑟

𝑋(𝑋′𝑋)−1 = (𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1 ො𝜎𝜀
2 = (𝑋′𝑋)−1 ො𝜎𝜀

2

We get:  σ𝛽 = (𝑋′𝑋)−1 ො𝜎𝜀
2 where  ො𝜎𝜀

2 =
1

𝑇−𝐾−1
𝑉′ 𝑉 and 𝐾 is the number of 

explanatory variables.

Therefore, we can calculate σ𝛽:

σ𝛽 =
(𝑋′𝑋)−1 𝑉′ 𝑉

𝑇 − 𝐾 − 1
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Maximum Likelihood Estimation (MLE)

We now turn to Maximum Likelihood as a tool for estimating parameters 

as well as testing models.

 Assume that 𝑟𝑡 ~
𝑖𝑖𝑑
𝑁 (μ, σ2)

 The goal is to estimate the distribution of the underlying parameters: 

𝜃 =
𝜇

𝜎2
. 

Intuition: the data implies the “most likely” value of 𝜃.

MLE is an asymptotic procedure and it is a parametric approach in that 

the distribution of the regression residuals must be specified explicitly. 
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Implementing MLE

Let us estimate 𝜇 and 𝜎2 using MLE; then derive the joint 

distribution of these estimates.

Under normality, the probability distribution function (pdf) of 

the rate of return takes the form

𝑝𝑑𝑓 𝑟𝑡 =
1

2πσ2
exp −

1

2

𝑟𝑡 − 𝜇 2

𝜎2
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The Joint Likelihood

We define the “Likelihood function” 𝐿 as the joint pdf

Following Bayes Rule:

𝐿 = 𝑝𝑑𝑓 𝑟1, 𝑟2, … , 𝑟𝑇 = 𝑝𝑑𝑓 𝑟1 ∣ 𝑟2 …𝑟𝑇 × 𝑝𝑑𝑓 𝑟2 ∣ 𝑟3…𝑟𝑇 ×⋯× 𝑝𝑑𝑓 𝑟𝑇

Since returns are assumed IID - it follows that 

𝐿 = 𝑝𝑑𝑓 𝑟1 × 𝑝𝑑𝑓 𝑟2 ×⋯× 𝑝𝑑𝑓 𝑟𝑇

𝐿 = 2𝜋𝜎2 −
𝑇
2 exp −

1

2


𝑡=1

𝑇
𝑟𝑡 − 𝜇

𝜎

2

Now take the natural log of the joint likelihood:

ln 𝐿 = −
𝑇

2
ln 2𝜋 −

𝑇

2
ln 𝜎2 −

1

2


𝑡=1

𝑇
𝑟𝑡 − 𝜇

𝜎

2
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MLE: Sample Estimates

Derive the first order conditions

𝜕 𝑙𝑛 𝐿

𝜕𝜇
=

𝑡=1

𝑇
𝑟𝑡 − 𝜇

𝜎2
= 0 ⇒ ො𝜇 =

1

𝑇


𝑡=1

𝑇

𝑟𝑡

𝜕 𝑙𝑛 𝐿

𝜕𝜎2
= −

𝑇

2𝜎2
+
1

2


𝑡=1

𝑇
𝑟𝑡 − 𝜇 2

𝜎4
= 0 ⇒ ො𝜎2 =

1

𝑇


𝑡=1

𝑇

𝑟𝑡 − ො𝜇 2

Since 𝐸 ො𝜎2 ≠ 𝜎2 - the variance estimator is not unbiased.
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MLE: The Information Matrix

Take second derivatives:

𝜕2 𝑙𝑛 𝐿

𝜕𝜇2
= −

𝑡=1

𝑇
1

𝜎2
= −

𝑇

𝜎2
⇒ 𝐸

𝜕2 𝑙𝑛 𝐿

𝜕𝜇2
= −

𝑇

𝜎2

𝜕2 𝑙𝑛 𝐿

𝜕𝜇𝜕𝜎2
= −

𝑡=1

𝑇
𝑟𝑡 − 𝜇

𝜎4
⇒ 𝐸

𝜕2 𝑙𝑛 𝐿

𝜕𝜇𝜕𝜎2
= 0

𝜕2 𝑙𝑛 𝐿

𝜕𝜎2 2
=

𝑇

2𝜎4
−

𝑡=1

𝑇
𝑟𝑡 − 𝜇 2

𝜎4
⇒ 𝐸

𝜕2 𝑙𝑛 𝐿

𝜕𝜎2 2
= −

𝑇

2𝜎4
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MLE: The Covariance Matrix

 Set the information matrix 𝐼 𝜃 = −𝐸
𝜕2 𝑙𝑛 𝐿

𝜕𝜃𝜕𝜃′

 The variance of መ𝜃 is:

𝑉𝑎𝑟 መ𝜃 = 𝐼(𝜃)−1

Or put differently, the asymptotic distribution of 𝜃 is:

𝜃 − መ𝜃 ∼ 𝑁 0, 𝐼(𝜃)−1

[It is suggested that you find and understand the proof]

 In our context, the covariance matrix is derived from the information matrix as follows:

−
𝑇

𝜎2
, 0

0, −
𝑇

2𝜎4

𝑀𝑈𝐿𝑇𝐼𝑃𝐿𝑌 "−1"

𝑇

𝜎2
, 0

0,
𝑇

2𝜎4

𝐼𝑁𝑉𝐸𝑅𝑆𝐸

𝜎2

𝑇
, 0

0,
2𝜎4

𝑇
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To Summarize

Multiply by 𝑇 and get:

𝑇 𝜃 − መ𝜃 ∼ 𝑁 0, 𝑇 ∙ 𝐼(𝜃)−1

And more explicitly:

𝑇

𝜇 −
1

𝑇


𝑡=1

𝑇

𝑟𝑡

𝜎2 −
1

𝑇


𝑡=1

𝑇

( 𝑟𝑡 −
1

𝑇


𝑡=1

𝑇

𝑟𝑡)
2

∼ 𝑁
0
0
,
𝜎2, 0

0,2𝜎4
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The Sample Mean and Variance

Notice that when returns are normally distributed – the 

sample mean and the sample variance are independent.

Departing from normality, the covariance between the sample 

mean and variance is nonzero. 

Notice also that the ratio obtained by dividing the variance of 

the variance (2𝜎4) by the variance of the mean (𝜎2) is smaller 

than one as long as volatility is below 70%. 

The mean return estimate is more noisy because the volatility 

is typically far below 70%, especially for well diversified 

portfolios. 
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Method of Moments: departing from Normality 

We know: 

𝐸 𝑟𝑡 = 𝜇

𝐸 𝑟𝑡 − 𝜇 2 = 𝜎2

 If:  

𝑔𝑡 𝜃 =
𝑟𝑡 − 𝜇

𝑟𝑡 − 𝜇 2 − 𝜎2

Then: 

𝐸 𝑔𝑡 =
0
0

That is, we set two momentum conditions.
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Method of Moments (MOM)

There are two parameters: 𝜇, 𝜎2

Stage 1: Moment Conditions 𝑔𝑡 =
𝑟𝑡 − 𝜇

𝑟𝑡 − 𝜇 2 − 𝜎2

Stage 2: estimation 

1

𝑇


𝑡=1

𝑇

ො𝑔𝑡 = 0
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Method of Moments

Continue estimation:

1

𝑇
𝑟𝑡 − Ƹ𝜇 = 0 𝑡 = 1,… , 𝑇

Ƹ𝜇 =
1

𝑇


𝑡=1

𝑇

𝑟𝑡

1

𝑇


𝑡=1

𝑇

𝑟𝑡 − Ƹ𝜇 2 − ො𝜎2 = 0

ො𝜎2 =
1

𝑇


𝑡=1

𝑇

𝑟𝑡 − Ƹ𝜇 2
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MOM: Stage 3

𝑆 = 𝐸 𝑔𝑡𝑔𝑡
′

𝑆 = 𝐸
𝑟𝑡 − 𝜇 2, 𝑟𝑡 − 𝜇 3 − 𝜎2 𝑟𝑡 − 𝜇

𝑟𝑡 − 𝜇 3 − 𝜎2 𝑟𝑡 − 𝜇 , 𝑟𝑡 − 𝜇 4 − 2𝜎2 𝑟𝑡 − 𝜇 2 + 𝜎4

↓

𝑆 =
𝜎2, 𝜇3
𝜇3, 𝜇4 − 𝜎4
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MOM: stage 4

Memo:

𝑔𝑡 𝜃 =
𝑟𝑡 − 𝜇

𝑟𝑡 − 𝜇 2 − 𝜎2

Stage 4: differentiate 𝑔𝑡 𝜃 w.r.t. 𝜃 and take the expected value

𝐷 = 𝐸
𝜕𝑔𝑡 𝜃

𝜕𝜃
= 𝐸

−1, 0
−2 𝑟𝑡 − 𝜇 , −1

=
−1, 0
0 , −1
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MOM: The Covariance Matrix

Stage 5: 

σ𝜃 = 𝐷′𝑆−1𝐷 −1

In this specific case we have: 𝐷 = −𝐼, therefore:

σ𝜃 = 𝑆
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The Covariance Matrices

Denote the MLE covariance matrix by σ𝜃
1 , and the MOM covariance 

matrix by σ𝜃
2 :

σ𝜃
1 =

𝜎2, 0

0, 2𝜎4
, σ𝜃

2 =
𝜎2, 𝜇3
𝜇3, 𝜇4 − 𝜎4

𝜇3 = 𝑆𝐾 = 𝑠𝑘 × 𝜎3

(sk is the skewness of the standardized return)

𝜇4 = 𝐾𝑅 = 𝑘𝑟 × 𝜎4

(kr is the kurtosis of the standardized return)

Sample estimates of the Skewness and Kurtosis are

Ƹ𝜇3 =
1

𝑇


𝑡=1

𝑇

𝑟𝑡 − ǉ𝑟 3 Ƹ𝜇4 =
1

𝑇


𝑡=1

𝑇

𝑟𝑡 − ǉ𝑟 4
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Under Normality the MOM Covariance Matrix 

Boils Down to MLE

σ𝜃
2 =

𝜎2, 𝜇3 = 0

𝜇3 = 0, 𝜇4 − 𝜎4 = 2𝜎4
= σ𝜃

1
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MOM: Estimating Regression Parameters

 Let us run the time series regression

𝑟𝑡 = 𝛼 + 𝛽 ⋅ 𝑟𝑚𝑡 + 𝜀𝑡

where:

𝑥𝑡 = 1, 𝑟𝑚𝑡
′

𝜃 = 𝛼, 𝛽 ′

We know that 𝐸 𝜀𝑡|𝑥𝑡 = 0

Given that 𝐸 𝜀𝑡|𝑥𝑡 = 0, from the Law of Iterated Expectations (LIE) 
it follows that 𝐸 𝑥𝑡𝜀𝑡 = 𝑥𝑡 𝑟𝑡 − 𝑥𝑡

′𝜃 = 0

That is, there are two moment conditions (stage 1):

𝐸 𝜀𝑡 = 0

𝐸 𝑟𝑚𝑡 𝜀𝑡 = 0
→ 𝑔𝑡 =

𝑟𝑡 − 𝛼 − 𝛽 ⋅ 𝑟𝑚𝑡

𝑟𝑡 − 𝛼 − 𝛽 ⋅ 𝑟𝑚𝑡 𝑟𝑚𝑡
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MOM: Estimating Regression Parameters

Stage 2: estimation:

1

𝑇


𝑡=1

𝑇

𝑥𝑡 𝑟𝑡 −
1

𝑇


𝑡=1

𝑇

𝑥𝑡 𝑥𝑡
′ መ𝜃 = 0

መ𝜃 = 

𝑡=1

𝑇

𝑥𝑡 𝑥𝑡
′

−1



𝑡=1

𝑇

𝑥𝑡 𝑟𝑡 = 𝑋′𝑋 −1𝑋′𝑅

𝑋𝑇×2 =
1, 𝑟𝑚1

⋯ ⋯
1, 𝑟𝑚𝑇

𝑅 =

𝑟1
…
𝑟𝑇
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MOM: Estimating Standard Errors

Estimation of the covariance matrix (assuming no serial 

correlation) 

Stage 3:

𝑆𝑇 =
1

𝑇


𝑡=1

𝑇

𝑔𝑡 ( መ𝜃)𝑔𝑡( መ𝜃)
′ =

1

𝑇


𝑡=1

𝑇

( 𝑥𝑡𝑥𝑡
′) Ƹ𝜀𝑡

2

Stage 4:

𝐷𝑇 =
1

𝑇


𝑡=1

𝑇
𝜕𝑔𝑡( መ𝜃)

𝜕 መ𝜃
= −

1

𝑇


𝑡=1

𝑇

( 𝑥𝑡𝑥𝑡
′) = −

𝑋′𝑋

𝑇
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MOM: Estimating Standard Errors

Stage 5: the covariance matrix estimate is:

Σ𝜃 = (𝐷𝑇
′ 𝑆𝑇

−1𝐷𝑇)
−1

Σ𝜃 = 𝑇(𝑋′𝑋)−1 

𝑡=1

𝑇

( 𝑥𝑡𝑥𝑡
′) Ƹ𝜀𝑡

2 (𝑋′𝑋)−1

Then, asymptotically we get

𝑇(𝜃 − መ𝜃) ∼ 𝑁(0, Σ𝜃)
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Session #3: Hypothesis Testing
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Overview

A short brief of the major contents for today’s class: 

Hypothesis testing 

TESTS: Skewness, Kurtosis, Bera-Jarque

Deriving test statistic for the Sharpe ratio
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Hypothesis Testing

Let us assume that a mutual fund invests in value stocks (e.g., 

stocks with high ratios of book-to-market).

Performance evaluation is mostly about running the regression 

of excess fund returns on the market benchmark (often 

multiple benchmarks): 

𝑅𝑖𝑡
𝑒 = 𝛼𝑖 + 𝛽𝑖𝑅𝑚𝑡

𝑒 + 𝜀𝑖𝑡

The hypothesis testing for examining performance is

H0: 𝛼𝑖 = 0 means no performance

H1: Otherwise (positive or negative performance) 
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Hypothesis Testing

Don’t reject H0 Reject H0

True state of world

H0 Good decision
Type 1 error

𝛼

H1

Type 2 error

𝛽
Good decision

Errors emerge if we reject H0 while it is true, or when we do 

not reject H0 when it is wrong:
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Hypothesis Testing - Errors

𝛼 is the first type error (size), while 𝛽 is the second type error 

(related to power). 

 The power of the test is equal to 1 − 𝛽.  

 We would prefer both 𝛼 and 𝛽 to be as small as possible, but 

there is always a trade-off.

 When 𝛼 decreases → 𝛽 increases and vice versa.

The implementation of hypothesis testing requires the 

knowledge of distribution theory.
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Skewness, Kurtosis & Bera Jarque Test Statistics 

 We aim to test normality of stock returns.

 We use three distinct tests to examine normality.
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Test I – Skewness

TEST 1 - Skewness (third moment)

 The setup for testing normality of stock return:

H0: 𝑅𝑡 ∼ 𝑁 𝜇, 𝜎2

H1: otherwise

 Sample Skewness is 

𝑆 =
1

𝑇


𝑡=1

𝑇
𝑅𝑡 − ො𝜇

ො𝜎

3

∼
𝐻0 𝑁 0,

6

𝑇
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Test I – Skewness

Multiplying 𝑆 by 
𝑇

6
, we get 

𝑇

6
𝑆~𝑁 0,1

 If the statistic value is higher (absolute value) than the critical 
value e.g., the statistic is equal to -2.31, then reject H0, otherwise do 
not reject the null of normality.
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TEST 2 - Kurtosis

Kurtosis estimate is: 

𝐾 =
1

𝑇


𝑡=1

𝑇
𝑅𝑡 − ො𝜇

ො𝜎

4

∼
𝐻0𝑁 3,

24

𝑇

After transformation:

𝑇

24
𝐾 − 3 ∼

𝐻0𝑁 0,1

Professor Doron Avramov, Financial Econometrics126



TEST 3 - Bera-Jarque Test

The statistic is:

𝐵𝐽 =
𝑇

6
𝑆2 +

𝑇

24
𝐾 − 3 2 ∼ 𝜒2 2

Why 𝜒2(2) ?
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TEST 3 - Bera-Jarque Test

If  𝑋1~𝑁 0,1 , 𝑋2~𝑁 0,1 , and 𝑋1 ⊥ 𝑋2 then:

𝑋1
2 + 𝑋2

2 ∼ 𝜒2 2


𝑇

6
𝑆 and 

𝑇

24
𝐾 − 3 are both standard normal and 

they are independent random variables. 
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Chi Squared Test

In financial economics, the Chi squared test is implemented 

quite frequently in hypothesis testing.

Let us derive it.

Suppose that: 𝑦 = σ−
1

2 𝑅 − 𝜇 ∼ 𝑁 0, 𝐼

Then: 𝑦′𝑦 = 𝑅 − 𝜇 ′σ−1 𝑅 − 𝜇 ∼ 𝜒2 𝑁
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Joint Hypothesis Test

You run the regression:

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝜀𝑡 , 𝑡 = 1,2, … , 𝑇
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Joint Hypothesis Test

GMM would establish three orthogonal conditions: 

𝐸 𝜀𝑡 = 0

𝐸 𝜀𝑡𝑥1𝑡 = 0

𝐸 𝜀𝑡𝑥2𝑡 = 0

Using matrix notation:

𝑌𝑇×1 =

𝑦1
.
.
𝑦𝑇

𝑋𝑇×3 =

1, 𝑥11, 𝑥21
1, 𝑥12, 𝑥22
…………
1, 𝑥1𝑇 , 𝑥2𝑇

𝐸𝑇×1 =

𝜀1
.
.
𝜀𝑇

𝛽3𝑥1 = 𝛽1, 𝛽2, 𝛽3
′

𝑌𝑇×1 = 𝑋𝑇×3𝛽3×1 + 𝐸𝑇×1
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Joint Hypothesis Test

Let us assume that: 𝜀𝑡 ∼ 𝑁 0, 𝜎𝜀
2 𝜀1, 𝜀2, 𝜀3…𝜀𝑇 are iid

↓

መ𝛽 ∼ 𝑁 𝛽, 𝑋′𝑋 −1𝜎𝜀
2

መ𝛽 = 𝑋′𝑋 −1𝑋′𝑌

Joint hypothesis testing:

𝐻0: 𝛽0 = 1, 𝛽2 = 0
𝐻1: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Joint Hypothesis Test

Define: 𝑅 =
1,0,0
0,0,1

, 𝑞 =
1
0

The joint test becomes:
𝐻0: 𝑅𝛽 = 𝑞

𝑅 →
1,0,0
0,0,1

×

𝛽0
𝛽1
𝛽2

=
𝛽0
𝛽2

=
H0

𝐻1: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1
0

← 𝑞

Professor Doron Avramov, Financial Econometrics133



Joint Hypothesis Test

Returning to the testing: 
𝐻0: 𝑅𝛽 − 𝑞 = 0
𝐻1: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

↓

𝑅 መ𝛽 − 𝑞 ∼ 𝑁 𝑅𝛽 − 𝑞, 𝑅σ𝛽𝑅
′

Under H0: 𝑅 መ𝛽 − 𝑞~
H0𝑁 0, 𝑅 σ𝛽𝑅

′

Chi squared: 𝑅 መ𝛽 − 𝑞
′
𝑅σ𝛽𝑅

′ −1
𝑅 መ𝛽 − 𝑞

𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

~𝜒2 2
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Joint Hypothesis Test

Yet, another example:

𝑦𝑡 = 𝛽0 + 𝛽1𝑥1𝑡 + 𝛽2𝑥2𝑡 + 𝛽3𝑥3𝑡 + 𝛽4𝑥4𝑡 + 𝛽5𝑥5𝑡 + 𝜀𝑡
𝑡 = 1,2,3, … , 𝑇

𝑌𝑇×1 =

𝑦1
.
𝑦𝑇

, 𝑋𝑇×6 =

1, 𝑥11, … , 𝑥51
.
.

1, 𝑥1𝑇 , … , 𝑥5𝑇

,

𝛽6×1 = 𝛽0, 𝛽1, … 𝛽6 ′

𝜀𝑇×1 =

𝜀1
.
𝜀𝑇

𝑌 = 𝑋𝛽 + 𝐸
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Joint Hypothesis Test

Joint hypothesis test:

𝐻0: 𝛽0 = 1, 𝛽1 =
1

2
, 𝛽2 =

1

3
, 𝛽3 =

1

4
, 𝛽5 = 7

𝐻1: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here is a receipt:

1. መ𝛽 = 𝑋′𝑋 −1𝑋′𝑌

2. 𝐸 = 𝑌 − 𝑋 መ𝛽

3. ො𝜎𝜀
2 =

1

𝑇−6
𝐸′ ⋅ 𝐸

4. መ𝛽 ∼ 𝑁 𝛽, 𝑋′𝑋 −1𝜎𝜀
2 = σ𝛽
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Joint Hypothesis Test

5. 𝑅 =

1,0,0,0,0,0
0,1,0,0,0,0
0,0,1,0,0,0
0,0,0,1,0,0
0,0,0,0,0,1

, 𝑞 =

1
1

2
1

3
1

4

7

6. 𝐻0: 𝑅𝛽 − 𝑞 = 0

7. 𝑅 መ𝛽 − 𝑞 ∼ 𝑁 𝑅𝛽 − 𝑞, 𝑅 σ𝛽𝑅
′

8. 𝑅 መ𝛽 − 𝑞 ∼
𝐻0 𝑁 0, 𝑅 σ𝛽𝑅

′

9. 𝑅 መ𝛽 − 𝑞
′
𝑅σ𝛽𝑅

′ −1
𝑅 መ𝛽 − 𝑞 ∼

𝐻0 𝜒2 5
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Joint Hypothesis Test

There are five degrees of freedom implied by the five 

restrictions on 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽5

The chi-squared distribution is always positive.
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Estimating the Sample Sharpe Ratio

You observe time series of returns on a stock, or a bond, or any 
investment vehicle (e.g., a mutual fund or a hedge fund): 
𝑟1, 𝑟2, … , 𝑟𝑇

You attempt to estimate the mean and the variance of those 
returns, derive their distribution, and test whether the Sharpe 
Ratio of that investment is equal to zero.

Let us denote the set of parameters by 𝜃 = 𝜇, 𝜎2 ′

The Sharpe ratio is equal to  𝑆𝑅(𝜃) =
𝜇−𝑟𝑓

𝜎
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MLE vs. MOM

To develop a test statistic for the SR, we can implement the 

MLE or MOM, depending upon our assumption about the 

return distribution.

Let us denote the sample estimates by መ𝜃

𝑟𝑡 ∼
𝑖𝑖𝑑
𝑁 𝜇, 𝜎2

𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑑𝑒𝑝𝑎𝑟𝑡 𝑓𝑟𝑜𝑚
𝑖𝑖𝑑 𝑛𝑜𝑟𝑚𝑎𝑙

MLE MOM

𝑇 መ𝜃 − 𝜃 ∼
𝑎
𝑁 0,σ𝜃

1 𝑇 መ𝜃 − 𝜃 ∼
𝑎
𝑁 0,σ𝜃

2
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MLE vs. MOM

As shown earlier, the asymptotic distribution using either MLE 

or MOM is normal with a zero mean but distinct variance 

covariance matrices:

𝑇 መ𝜃 − 𝜃 ∼
𝑀𝐿𝐸

𝑁 0,σ𝜃
1 𝑇 መ𝜃 − 𝜃 ∼

𝑀𝑂𝑀
𝑁 0,σ𝜃

2
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Distribution of the SR Estimate: The Delta Method

We will show that 𝑇 𝑆 𝑅 − 𝑆𝑅 ∼
𝛼
𝑁 0, 𝜎𝑆𝑅

2

We use the Delta method to derive 𝜎𝑆𝑅
2

The delta method is based upon the first order Taylor 

approximation.
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Distribution of the SR Estimate: The Delta Method

The first-order TA is 

𝑆𝑅 𝜃 = 𝑆𝑅 መ𝜃 +
𝜕𝑆𝑅

𝜕𝜃′ 1×2
⋅ 𝜃 − መ𝜃

2×1
⇒

𝑆𝑅 𝜃 − 𝑆𝑅 መ𝜃 =
𝜕𝑆𝑅

𝜕𝜃′ 1×2
⋅ 𝜃 − መ𝜃

2×1

The derivative is estimated at መ𝜃
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Distribution of the Sample SR

𝐸 𝑆𝑅 𝜃 − 𝑆𝑅 መ𝜃 = 𝐸
𝜕𝑆𝑅

𝜕𝜃′
𝜃 − 𝐸 መ𝜃 = 0

whereas

𝑉𝐴𝑅 መ𝜃 = 𝐸 መ𝜃 − 𝜃 መ𝜃 − 𝜃
′

𝑉𝐴𝑅 𝑆𝑅 𝜃 − 𝑆𝑅 መ𝜃 = 𝐸 𝑆𝑅 𝜃 − 𝑆𝑅 መ𝜃
2
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The Variance of the SR

Continue:

𝐸
𝜕𝑆𝑅

𝜕𝜃′
𝜃 − መ𝜃 𝜃 − መ𝜃

′ 𝜕𝑆𝑅

𝜕𝜃
=

=
𝜕𝑆𝑅

𝜕𝜃′
𝐸 𝜃 − መ𝜃 𝜃 − መ𝜃

′ 𝜕𝑆𝑅

𝜕𝜃
=

=
𝜕𝑆𝑅

𝜕𝜃′
σ𝜃

𝜕𝑆𝑅

𝜕𝜃
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First Derivatives of the SR

The SR is formulated as 𝑆𝑅 =
𝜇−𝑟𝑓

𝜎2 0.5

Let us derive:
𝜕𝑆𝑅

𝜕𝜇
=
1

𝜎

𝜕𝑆𝑅

𝜕𝜎2
=
−
1
2
𝜎2 −0.5 𝜇 − 𝑟𝑓

𝜎2
=
− 𝜇 − 𝑟𝑓

2𝜎3
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The Distribution of SR under MLE

Continue:

𝜕𝑆𝑅

𝜕𝜃′
σ𝜃

𝜕𝑆𝑅

𝜕𝜃
=

1

𝜎
, −

𝜇 − 𝑟𝑓

2𝜎3
𝜎2, 0

0, 2𝜎4

1

𝜎

−
𝜇 − 𝑟𝑓

2𝜎3

⇒ 𝑇 𝑆𝑅 − 𝑆 𝑅 ∼ 𝑁 0, 1 +
1

2
𝑆 𝑅2
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The Delta Method in General

Here is the general application of the delta method

If 𝑇 መ𝜃 − 𝜃 ~𝑁 0, σ𝜃

Then let 𝑑 𝜃 be some function of 𝜃 :

𝑇 𝑑 መ𝜃 − 𝑑 𝜃 ∼ 𝑁 0, 𝐷 𝜃 × σ𝜃 × 𝐷 𝜃 ′

where 𝐷 𝜃 is the vector of derivatives of 𝑑 𝜃 with respect to 𝜃

Professor Doron Avramov, Financial Econometrics148



Hypothesis Testing

Does the S&P index outperform the Rf?

H0: SR=0

H1: Otherwise

 Under the null there is no outperformance.

 Thus, under the null  

𝑇𝑆 𝑅 ∼ 𝑁(0,1 + 1

2
𝑆 𝑅2)

𝑇𝑆 𝑅

1+
1

2
𝑆 𝑅2

∼ 𝑁(0,1)
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Session #4: The Efficient Frontier and the 

Tangency Portfolio
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Testing Asset Pricing Models

Central to financial econometrics is the formation of test 

statistics to examine the validity of asset pricing models.

There are time series as well as cross sectional asset pricing 

tests.

In this course the focus is on time-series tests, while in the 

companion course for PhD students – Asset Pricing – also cross 

sectional tests are covered. 
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Testing Asset Pricing Models

Time series tests are only implementable when common factors are 
portfolio spreads, such as excess return on the market portfolio as well 
as the SMB (small minus big), the HML (high minus low), the WML 
(winner minus loser), the TERM (long minus short maturity), and the 
DEF (low minus high quality) portfolios.

The first four are equity while the last two are bond portfolios.

Cross sectional tests apply to both portfolio and non-portfolio based 
factors. 

Consumption growth in the consumption based CAPM (CCAPM) is a 
good example of a factor that is not a return spread.
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Time Series Tests and the Tangency Portfolio

Interestingly, time series tests are directly linked to the notion 

of the tangency portfolio and the efficient frontier.

Here is the efficient frontier, in which the tangency portfolio is 

denoted by T.
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Economic Interpretation of the Time Series Tests

Testing the validity of the CAPM entails the time series 

regressions:
𝑟1𝑡
𝑒 = 𝛼1 + 𝛽1𝑟𝑚𝑡

𝑒 + 𝜀1𝑡
…………………

𝑟𝑁𝑡
𝑒 = 𝛼𝑁 + 𝛽𝑁𝑟𝑚𝑡

𝑒 + 𝜀𝑁𝑡

The CAPM says: H0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁=0        

H1: Otherwise
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Economic Interpretation of the Time Series Tests

The null is equivalent to the hypothesis that the market 

portfolio is the tangency portfolio. 

Of course, even if the model is valid – the market portfolio 

WILL NEVER lie on the estimated frontier.

This is due to sampling errors; the efficient frontier is 

estimated. 

The question is whether the market portfolio is close enough, 

up to a statistical error, to the tangency portfolio.
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What about Multi-Factor Models?

 The CAPM is a one-factor model.

 There are several extensions to the CAPM.

 The multivariate version is given by the K-factor model:
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Testing Multifactor Models

𝑟1𝑡
𝑒 = 𝛼1 + 𝛽11𝑓1 + 𝛽12𝑓2 +⋯+ 𝛽1𝐾𝑓𝐾 + 𝜀1𝑡

…………………
𝑟𝑁𝑡
𝑒 = 𝛼𝑁 + 𝛽𝑁1𝑓1 + 𝛽𝑁2𝑓2 +⋯+ 𝛽𝑁𝐾𝑓𝐾 + 𝜀𝑁𝑡

The null is again: H0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁=0

H1: Otherwise

In the multi-factor context, the hypothesis is that some 

particular combination of the factors is the tangency portfolio.
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The Efficient Frontier: Investable Assets

Consider N risky assets whose returns at time t are:

𝑅𝑡
𝑁×1

=
𝑅1𝑡
…
𝑅𝑁𝑡

The expected value of return is denoted by:

𝐸 𝑅𝑡 =
𝐸 𝑅1𝑡
…

𝐸 𝑅𝑁𝑡

=

𝜇1
…
𝜇𝑁

= 𝜇
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The Covariance Matrix

The variance covariance matrix is denoted by:

𝑉 = 𝐸 𝑅𝑡 − 𝜇 𝑅𝑡 − 𝜇 ′ =

𝜎1
2, … , … ,…𝜎1𝑁

… , 𝜎2
2, … , …𝜎2𝑁

………………
…………… , 𝜎𝑁

2
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Creating a Portfolio

A portfolio is investing 𝑤
𝑁×1

=

𝑤1

…
𝑤𝑁

is N assets.

The return of the portfolio is: 𝑅𝑝 = 𝑤1𝑅1 + 𝑤2𝑅2 +⋯+𝑤𝑁𝑅𝑁

The expected return of the portfolio is: 

𝐸 𝑅𝑝 = 𝑤1𝐸 𝑅1 + 𝑤2𝐸 𝑅2 +⋯+𝑤𝑁𝐸 𝑅𝑁 =

= 𝑤1𝜇1 +𝑤2𝜇2 +⋯+𝑤𝑁𝜇𝑁 = σ𝑖=1
𝑁 𝑤𝑖𝜇𝑖 = 𝑤′𝜇
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Creating a Portfolio

The variance of the portfolio is:

𝜎𝑝
2 = 𝑉𝐴𝑅 𝑅𝑝 = 𝑤1

2𝜎1
2 + 𝑤1𝑤2𝜎12 +⋯𝑤1𝑤𝑁𝜎1𝑁

+𝑤1𝑤2𝜎12 + 𝑤2
2𝜎2

2 +⋯+𝑤2𝑤𝑁𝜎2𝑁
+
⋮
+

+𝑤1𝑤𝑁𝜎1𝑁 +𝑤2𝑤𝑁𝜎2𝑁 +⋯+𝑤𝑁
2𝜎𝑁

2
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Creating a Portfolio

Thus 𝜎𝑝
2 = σ𝑖=1

𝑁 σ𝑗=1
𝑁 𝑤𝑖 𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

where 𝜌𝑖𝑗 is the coefficient of correlation.

Using matrix notation:  σ𝑃
2

1×1
= 𝑤′

1×𝑁
𝑉

𝑁×𝑁
𝑤
𝑁×1
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The Case of Two Risky Assets

To illustrate, let us consider two risky assets:

𝑅𝑝 = 𝑤1𝑅1 +𝑤2𝑅2

We know: 𝜎𝑝
2 = 𝑉𝐴𝑅 𝑅𝑝𝑡 = 𝑤1

2𝜎1
2 + 2𝑤1𝑤2𝜎12 +𝑤2

2𝜎2
2

Let us check: 

𝜎𝑝
2 = 𝑤1, 𝑤2

𝜎1
2, 𝜎12

𝜎12, 𝜎2
2

𝑤1

𝑤2
= 𝑤1

2𝜎1
2 + 2𝑤1𝑤2𝜎12 + 𝑤2

2𝜎2
2

So it works!
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Dominance of the Covariance

When the number of assets is large, the covariances define the 

portfolio’s volatility.

To illustrate, assume that all assets have the same volatility 

and the same pairwise correlations. 

Then an equal weight portfolio’s variation is

𝜎𝑝
2 = 𝜎2

𝑁 + 𝜌𝑁(𝑁 − 1)

𝑁2

𝑁→∞
𝜎2𝜌 = cov
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The Efficient Frontier: Excluding Risk-free Asset

The optimization program:

min 𝑤′𝑉𝑤
𝑠. 𝑡 𝑤′𝜄 = 1

𝑤′𝜇 = 𝜇𝑝

where 𝜄 is the Greek letter iota ɇ𝑁×1 =
1
…
1

,

and where 𝜇𝑝 is the expected return target set by the investor.
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The Efficient Frontier: Excluding Risk-free Asset

Using the Lagrange setup:

𝐿 =
1

2
𝑤′𝑉𝑤 + 𝜆1 1 − 𝑤′𝜄 + 𝜆2 𝜇𝑝 −𝑤′𝜇

𝜕𝐿

𝜕𝑤
= 𝑉𝑤 − 𝜆1𝜄 − 𝜆2𝜇 = 0

𝑤 = 𝜆1𝑉
−1𝜄 + 𝜆2𝑉

−1𝜇
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The Efficient Frontier: Without Risk-free Asset

Let 

𝑎 = 𝜄′𝑉−1𝜇
𝑏 = 𝜇′𝑉−1𝜇
𝑐 = 𝜄′𝑉−1𝜄
𝑑 = 𝑏𝑐 − 𝑎2

𝑔 =
1

𝑑
𝑏𝑉−1𝜄 − 𝑎𝑉−1𝜇

ℎ =
1

𝑑
𝑐𝑉−1𝜇 − 𝑎𝑉−1𝜄

The optimal portfolio is:  𝑤∗

𝑁×1
= 𝑔

𝑁×1
+ ℎ

𝑁×1
𝜇𝑝
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Examine the Optimal Solution

That is, once you specify the expected return target, the 

optimal portfolio follows immediately.

Let us check whether the sum of weights is equal to 1.
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Examine the Optimal Solution

𝜄′𝑤 = 𝜄′𝑔 + 𝜄′ℎ𝜇𝑝

𝜄′𝑔 =
1

𝑑
𝑏𝜄′𝑉−1𝜄 − 𝑎𝜄′𝑉−1𝜇 =

1

𝑑
𝑏𝑐 − 𝑎2 =

𝑑

𝑑
= 1

𝜄′ℎ =
1

𝑑
𝑐𝜄′𝑉−1𝜇 − 𝑎𝜄′𝑉−1𝜄 =

1

𝑑
𝑎𝑐 − 𝑎𝑐 = 0

Indeed, 𝑤′𝜄 = 1.  

Professor Doron Avramov, Financial Econometrics169



Examine the Optimal Solution

Let us now check whether the expected return on  the portfolio 

is equal to 𝜇𝑝.

Recall: 𝑤 = 𝑔 + ℎ𝜇𝑝

𝑤′𝜇 = 𝑔′𝜇 + 𝜇𝑝 ℎ′𝜇

So we need to show 𝑔′𝜇 = 0

ℎ′𝜇 = 1
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Examine the Optimal Solution

𝑔′𝜇 =
1

𝑑
𝑏𝜄′𝑉−1𝜇 − 𝑎𝜇′𝑉−1𝜇 =

1

𝑑
𝑎𝑏 − 𝑎𝑏 = 0

Try it yourself:  prove that ℎ′𝜇 = 1.
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Efficient Frontier

The optimization program also delivers the shape of the frontier.
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Efficient Frontier

 Point A stands for the Global Minimum Variance Portfolio 

(GMVP).

The efficient frontier reflects the investment opportunities; this 

is the supply side in partial equilibrium. 

Points below A are inefficient since they are being dominated 

by other portfolios that deliver better risk-return tradeoff. 
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The Notion of Dominance

If 𝜎𝐵 ≤ 𝜎𝐴

𝜇𝐵 ≥ 𝜇𝐴

and there is at least one strong inequality, then portfolio B 

dominates portfolio A.
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The Efficient Frontier with Risk-free Asset

In practice, there is not really a risk-free asset. Why?

 Credit risk (see Greece, Spain, Iceland).

 Inflation risk.

 Interest rate risk and re-investment risk when the investment 

horizon is longer than the maturity of the supposedly risk-free 

instrument or when coupons are paid. 
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Setting the Optimization 

in the Presence of Risk-free Asset

The optimal solution is given by:

min𝑤′𝑉𝑤

s. t 𝑤′𝜇 + 1 − 𝑤′𝜄 𝑅𝑓 = 𝜇𝑝 or, 𝑅𝑓 + 𝑤′𝜇𝑒 = 𝜇𝑝

and the tangency portfolio takes the form: 

ഥ𝑤∗ =
𝑉−1 𝜇 − 𝑅𝑓 ⋅ 𝜄

𝜄′𝑉−1 𝜇 − 𝑅𝑓 ⋅ 𝜄
=

𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒

The tangency portfolio is investing all the funds in risky assets.
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The Investment Opportunities

However, the investor could select any point in the line 

emerging from the risk-free rate and touching the efficient 

frontier in point T.

The location depends on the attitude toward risk.
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Fund Separation

Interestingly, all investors in the economy will mix the 

tangency portfolio and the risk-free asset.

The mix depends on preferences.

But the proportion of risky assets will be equal across the 

board.

One way to test the CAPM is indeed to examine whether all 

investors hold the same proportions of risky assets.

Obviously they don’t!
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Equilibrium

The efficient frontier reflects 

the supply side.

What about the demand?

The demand side can be 

represented by a set of 

indifference curves.
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Equilibrium

What is the slope of indifference curve positive?

The equilibrium obtains when the indifference curve tangents 

the efficient frontier 

No risk-free asset:
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Equilibrium

With risk-free asset:
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Maximize Utility / Certainty Equivalent Return 

In the presence of a risk-free security, the tangency point can be 

found by maximizing a utility function of the form

𝑈 = 𝜇𝑝 −
1

2
𝛾𝜎𝑝

2

where 𝛾 is the relative risk aversion.
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Maximize Utility / Certainty Equivalent Return 

 Notice that utility is equal to expected return minus a penalty 

factor. 

 The penalty factor positively depends on the risk aversion 

(demand) and the variance (supply).
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Utility Maximization

𝑈 𝑤 = 𝑅𝑓 + 𝑤′𝜇𝑒 −
1

2
𝛾 ⋅ 𝑤′𝑉𝑤

𝜕𝑈

𝜕𝑤
= 𝜇𝑒 − 𝛾𝑉𝑤 = 0

𝑤∗ =
1

𝛾
𝑉−1𝜇𝑒

The utility maximization yields the same tangency portfolio

ഥ𝑤∗ =
𝑉−1𝜇𝑒
𝜄′𝑉−1𝜇𝑒

where 𝑤∗ reflects the fraction of weights invested in risky assets. 

The rest is invested in the risk-free asset.
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Mixing the Risky and Risk-free Assets

𝑤∗ =
1

𝛾
𝑉−1𝜇𝑒

 So if 𝛾 = 𝜄′𝑉−1𝜇𝑒 then all funds (100%) are invested in risky 

assets.

 If 𝛾 > 𝜄′𝑉−1𝜇𝑒 then some fraction is invested in risk-free asset.

If 𝛾 < 𝜄′𝑉−1𝜇𝑒 then the investor borrows money to leverage 

his/her equity position.
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The Exponential Utility Function

The exponential utility function is of the form

𝑈 𝑊 = −exp −𝜆𝑊 where 𝜆 > 0

Notice that

𝑈′ 𝑊 = 𝜆 exp −𝜆𝑊 > 0
𝑈′′ 𝑊 = −𝜆2 exp −𝜆𝑊 < 0

That is, the marginal utility is positive but it diminishes with 

an increasing wealth.
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The Exponential Utility Function

𝐴𝑅𝐴 = −
𝑈′′

𝑈′
= 𝜆

Indeed, the exponential preferences belong to the class of 

constant absolute risk aversion (CARA).

For comparison, power preferences belong to the class of 

constant relative risk aversion (CRRA).
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Exponential: The Optimization Mechanism

The investor maximizes the expected value of the exponential 

utility where the decision variable is the set of weights w and 

subject to the wealth evolution. 

That is

max
𝑤

𝐸 𝑈 |𝑊𝑡+1 𝑊𝑡

𝑠. 𝑡. 𝑊𝑡+1= 𝑊𝑡 1 + 𝑅𝑓 + 𝑤′𝑅𝑡+1
𝑒
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Exponential: The Optimization Mechanism

Let us assume that 𝑅𝑡+1
𝑒 ∼ 𝑁 𝜇𝑒 , 𝑉

Then 𝑊𝑡+1 ∼ 𝑁 𝑊𝑡 1 + 𝑅𝑓 + 𝑤′𝜇𝑒

𝑚𝑒𝑎𝑛

,𝑊𝑡
2𝑤′𝑉𝑤

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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Exponential: The Optimization Mechanism

It is known that for 𝑥 ∼ 𝑁 𝜇𝑥 , 𝜎𝑥
2

𝐸 exp 𝑎𝑥 = exp 𝑎𝜇𝑥 +
1

2
𝑎2𝜎𝑥

2
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Exponential: The Optimization Mechanism

Thus, 

−𝐸 exp −𝜆𝑊𝑡+1 = −exp −𝜆𝐸 𝑊𝑡+1 +
1

2
𝜆2 ⋅ 𝑉𝐴𝑅 𝑊𝑡+1

= −exp −𝜆𝑊𝑡 1 + 𝑅𝑓 + 𝑤′𝜇𝑒 +
1

2
𝜆2𝑊𝑡

2𝑤′𝑉𝑤

= −exp −𝜆𝑊𝑡 1 + 𝑅𝑓 exp −𝜆𝑊𝑡 𝑤′𝜇𝑒 −
1

2
𝜆𝑊𝑡𝑤

′𝑉𝑤
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Exponential: The Optimization Mechanism

Notice that 𝛾 = 𝜆𝑊𝑡

where 𝛾 is the relative risk aversion coefficient. 
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Exponential: The Optimization Mechanism

So the investor ultimately maximizes 

max
𝑤

𝑤′𝜇𝑒 −
1

2
𝛾𝑤′𝑉𝑤

The optimal solution is 𝑤∗ =
1

𝛾
𝑉−1𝜇𝑒.

The tangency portfolio is the same as before

ഥ𝑤∗ =
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒
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Exponential: The Optimization Mechanism

Conclusion:

The joint assumption of exponential utility and normally 

distributed stock return leads to the well-known mean 

variance solution.
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Quadratic Preferences

The quadratic utility function  is of the form

𝑈 𝑊 = 𝑎 +𝑊 −
𝑏

2
𝑊2 where 𝑏 > 0

𝜕𝑈

𝜕𝑊
= 1 − 𝑏𝑊

𝜕2𝑈

𝜕𝑊2
= −𝑏 < 0

Notice that the first derivative is positive for 𝑏 <
1

𝑊
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Quadratic Preferences 

The utility function looks like
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Quadratic Preferences 

It has a diminishing part – which makes no sense – because we 

always prefer higher than lower wealth

Utility is thus restricted to the positive slope part

Notice that 𝛾 = 𝑅𝑅𝐴 = −
𝑈′′

𝑈′ 𝑊 =
𝑏𝑊

1−𝑏𝑊

The optimization formulation is given by

max
𝑤

𝐸 𝑈 |𝑊𝑡+1 𝑊𝑡

𝑠. 𝑡. 𝑊𝑡+1 = 𝑊𝑡 1 + 𝑅𝑓𝑡 + 𝑤′𝑅𝑡+1
𝑒
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Quadratic Preferences

Avramov and Chordia (2006 JFE) show that the optimization 

could be formulated as

max
𝑤

𝑤′𝜇𝑒 −
1

2
1
𝛾
− 𝑅𝑓𝑡

𝑤′ 𝑉 + 𝜇𝑒𝜇𝑒
′ −1

𝑤

The solution takes the form

𝑤∗ =
1

𝛾
− 𝑅𝑓𝑡

𝑉−1𝜇𝑒

1 + 𝜇𝑒
′
𝑉−1𝜇𝑒
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Quadratic Preferences

The tangency portfolio is

ഥ𝑤∗ =
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒

The only difference from previously presented competing 

specifications is the composition of risky and risk-free assets.

But in all solutions the proportions of risky assets are 

identical. 
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The Sharpe Ratio of the Tangency Portfolio

Notice that 𝜇𝑒
′
𝑉−1𝜇𝑒 is actually the squared Sharpe Ratio of 

the tangency portfolio.

Let us prove it 

ഥ𝑤∗ =
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒

𝜇𝑇𝑃 − 𝑅𝑓 = ഥ𝑤∗′𝜇𝑒 + 1 − ഥ𝑤∗′𝜄 𝑅𝑓 = ഥ𝑤∗𝜇𝑒 =
𝜇𝑒

′
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒

𝜎𝑇𝑃
2 = ഥ𝑤∗′𝑉ഥ𝑤∗ =

𝜇𝑒
′
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒 2
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The Sharpe Ratio of the Tangency Portfolio

Thus, 𝑆𝑅𝑇𝑃
2 =

𝜇𝑇𝑃−𝑅𝑓
2

𝜎𝑇𝑃
2 = 𝜇𝑒

′
𝑉−1𝜇𝑒

TP is a subscript for the tangency portfolio.
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Session #5: Testing Asset Pricing Models: 

Time Series Perspective
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Why Caring about Asset Pricing Models?

An essential question that arises is why would both academics 

and practitioners invest huge resources in developing and 

testing asset pricing models.

It turns out that pricing models have crucial roles in various 

applications in financial economics – both asset pricing as well 

as corporate finance.

In the following, I list five major applications.
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1 – Common Risk Factors

Pricing models characterize the risk profile of a firm.

In particular, systematic risk is no longer stock return 

volatility – rather it is the loadings on risk factors.

For instance, in the single factor CAPM the market beta – or 

the co-variation with the market – characterizes the systematic 

risk of a firm.
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1 – Common Risk Factors

Likewise, in the single factor (C)CAPM the consumption 

growth beta – or the co-variation with consumption growth –

characterizes the systematic risk of a firm.

In the multi-factor Fama-French (FF) model there are three 

sources of risk – the market beta, the SMB beta, and the HML 

beta.
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1 – Common Risk Factors

Under FF, other things being equal (ceteris paribus), a firm is 

riskier if its loading on SMB beta is higher.

Under FF, other things being equal (ceteris paribus), a firm is 

riskier if its loading on HML beta is higher.
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2 – Moments for Asset Allocation

Pricing models deliver moments for asset allocation.

For instance, the tangency portfolio takes on the form

𝑤𝑇𝑃 =
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒
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2 – Asset Allocation

Under the CAPM, the vector of expected returns and the 

covariance matrix are given by:
𝜇𝑒 = 𝛽𝜇𝑚

𝑒

𝑉 = 𝛽𝛽′𝜎𝑚
2 + Σ

where σ is the covariance matrix of the residuals in the time-

series asset pricing regression. 

We denoted by Ψ the residual covariance matrix in the case 

wherein the off diagonal elements are zeroed out.
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2 – Asset Allocation

The corresponding quantities under the FF model are

𝜇𝑒 = 𝛽𝑀𝐾𝑇𝜇𝑚
𝑒 + 𝛽𝑆𝑀𝐿𝜇𝑆𝑀𝐿 + 𝛽𝐻𝑀𝐿𝜇𝐻𝑀𝐿

𝑉 = 𝛽σ𝐹𝛽
′ + σ

where σ𝐹 is the covariance matrix of the factors.
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3 – Discount Factors

Expected return is the discount factor, commonly denoted by k, 

in present value formulas in general and firm evaluation in 

particular:

𝑃𝑉 =

𝑡=1

𝑇
𝐶𝐹𝑡

1 + 𝑘 𝑡

In practical applications, expected returns are typically 

assumed to be constant over time, an unrealistic assumption. 
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3 – Discount Factors

Indeed, thus far we have examined models with constant beta 

and constant risk premiums

𝜇𝑒 = 𝛽′𝜆

where 𝜆 is a K-vector of risk premiums. 

When factors are return spreads the risk premium is the mean 

of the factor.

Later we will consider models with time varying factor 

loadings.
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4 – Benchmarks

Factors in asset pricing models serve as benchmarks for 

evaluating performance of active investments.

In particular, performance is the intercept (alpha) in the time 

series regression of excess fund returns on a set of benchmarks 

(typically four benchmarks in mutual funds and more so in 

hedge funds):

𝑟𝑡
𝑒 = 𝛼 + 𝛽𝑀𝐾𝑇 × 𝑟𝑀𝐾𝑇,𝑡

𝑒 + 𝛽𝑆𝑀𝐵 × 𝑆𝑀𝐵𝑡
+𝛽𝐻𝑀𝐿 × 𝐻𝑀𝐿𝑡 + 𝛽𝑊𝑀𝐿 ×𝑊𝑀𝐿𝑡 + 𝜀𝑡

Professor Doron Avramov, Financial Econometrics212



5 – Corporate Finance

There is a plethora of studies in corporate finance that use 

asset pricing models to risk adjust asset returns.

Here are several examples:

Examining the long run performance of IPO firm.

Examining the long run performance of SEO firms.

Analyzing abnormal performance of stocks going through dividend 

initiation, dividend omission, splits, and reverse splits.
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5 – Corporate Finance

Analyzing mergers and acquisitions 

Analyzing the impact of change in board of directors.

Studying the impact of corporate governance on the cross section of 

average returns.

Studying the long run impact of stock/bond repurchase.
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Time Series Tests

Time series tests are designated to examine the validity of 
asset pricing models in which factors are return spreads.

Example: the market factor is the return difference between 
the market portfolio and the risk-free asset.

Consumption growth is not a return spread. 

Thus, the consumption CAPM cannot be tested using time 
series regressions, unless you form a factor mimicking portfolio 
(FMP) for consumption growth.

Professor Doron Avramov, Financial Econometrics215



Time Series Tests

FMP is a convex combination of returns on some basis assets 
having the maximal correlation with consumption growth.

The statistical time series tests have an appealing economic 
interpretation. In particular: 

Testing the CAPM amounts to testing whether the market 
portfolio is the tangency portfolio.

Testing multi-factor models amounts to testing whether some 
particular combination of the factors is the tangency portfolio.
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Testing the CAPM

Run the time series regression:
𝑟1𝑡
𝑒 = 𝛼1 + 𝛽1𝑟𝑚𝑡

𝑒 + 𝜀1𝑡
⋮

𝑟𝑁𝑡
𝑒 = 𝛼𝑁 + 𝛽𝑁𝑟𝑚𝑡

𝑒 + 𝜀𝑁𝑡

The null hypothesis is:

𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁 = 0
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Testing the CAPM

In the following, I will introduce four times series test 

statistics:

WALD.

Likelihood Ratio.

GRS (Gibbons, Ross, and Shanken (1989)).

GMM.
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The Distribution of 𝛼. 

Recall, 𝛼 is asset mispricing.

The time series regressions can be rewritten using a vector 
form as:

𝑟𝑡
𝑒

𝑁×1
= Ƚ

𝑁×1
+ Ⱦ

𝑁×1
⋅ 𝑟𝑚𝑡

𝑒

1×1
+ ε𝑡

𝑁×1

Let us assume that

ε𝑡
𝑁×1

~
𝑖𝑖𝑑
𝑁 0, σ

𝑁×𝑁
for  𝑡 = 1,2,3, … , 𝑇

Let 𝜃 = 𝛼′, 𝛽′, 𝑣𝑒𝑐ℎ σ ′ ′ be the set of all parameters. 

Professor Doron Avramov, Financial Econometrics219



The Distribution of 𝛼.

Under normality, the likelihood function for 𝜀𝑡 is

𝐿 |𝜀𝑡 𝜃 = 𝑐 σ−
1
2exp −

1

2
𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒 ′σ−1 𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒

where 𝑐 is the constant of integration (recall the integral of a 

probability distribution function is unity).
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The Distribution of 𝛼.

Moreover, the IID assumption suggests that

𝐿 |𝜀1, 𝜀2, … , 𝜀𝑁 𝜃 = 𝑐𝑇σ−
𝑇

2

× exp −
1

2
σ𝑡=1
𝑇 𝑟𝑡

𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡
𝑒 ′σ−1 𝑟𝑡

𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡
𝑒

Taking the natural log from both sides yields

ln 𝐿 ∝ −
𝑇

2
ln Σ −

1

2
σ𝑡=1
𝑇 𝑟𝑡

𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡
𝑒 ′σ−1 𝑟𝑡

𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡
𝑒
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The Distribution of 𝛼.

Asymptotically, we have 𝜃 − መ𝜃 ∼ 𝑁 0, Σ(𝜃)

where

Σ 𝜃 = −𝐸
𝜕2𝑙𝑛𝐿

𝜕𝜃𝜕𝜃′

−1
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The Distribution of 𝛼.

Let us estimate the parameters

𝜕 𝑙𝑛 𝐿

𝜕𝛼
= σ−1 σ

𝑇

𝑡=1
𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒

𝜕 𝑙𝑛 𝐿

𝜕𝛽
= σ−1 σ

𝑇

𝑡=1
𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒 × 𝑟𝑚𝑡
𝑒

𝜕 𝑙𝑛 𝐿

𝜕σ
= −

𝑇

2
σ−1 +

1

2
σ−1 σ

𝑇

𝑡=1
𝜀𝑡𝜀𝑡

′ σ−1
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The Distribution of 𝛼.

Solving for the first order conditions yields

ො𝛼 = ො𝜇𝑒 − መ𝛽 ⋅ ො𝜇𝑚
𝑒

መ𝛽 =
σ𝑡=1
𝑇 𝑟𝑡

𝑒 − ො𝜇𝑒 𝑟𝑚𝑡
𝑒 − ො𝜇𝑚

𝑒

σ𝑡=1
𝑇 𝑟𝑚𝑡

𝑒 − ො𝜇𝑚
𝑒 2
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The Distribution of 𝛼.

Moreover,

Σ =
1

𝑇


𝑡=1

𝑇

Ƹ𝜀𝑡 Ƹ𝜀𝑡
′

ො𝜇𝑒 =
1

𝑇


𝑡=1

𝑇

𝑟𝑡
𝑒

𝜇𝑚
𝑒 =

1

𝑇


𝑡=1

𝑇

𝑟𝑚𝑡
𝑒
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The Distribution of 𝛼.

Recall our objective is to find the standard errors of ො𝛼.

Standard errors could be found using the information matrix.
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The Distribution of 𝛼.

The information matrix is constructed as follows

𝐼 𝜃 = − 𝐸

𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝛼′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝛽′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕 σ′

𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕𝛼′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕𝛽′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕 σ′

𝜕2 𝑙𝑛 𝐿

𝜕 σ𝜕 𝛼′
,
𝜕2 𝑙𝑛 𝐿

𝜕 σ𝜕 𝛽′
,
𝜕2 𝑙𝑛 𝐿

𝜕 σ𝜕 σ′
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The Distribution of the Parameters

Exercise: establish the information matrix.

Notice that ො𝛼 and መ𝛽 are independent of σ - thus, you can 

ignore the second derivatives with respect to σ in the 

information matrix if your objective is to find the distribution 

of ො𝛼 or መ𝛽 or both.

If you aim to derive the distribution of σ then focus on the 

bottom right block of the information matrix.
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The Distribution of 𝛼.

We get:

ො𝛼 ∼ 𝑁 𝛼,
1

𝑇
1 +

ො𝜇𝑚
𝑒

ො𝜎𝑚

2

Σ

Moreover,

መ𝛽 ∼ 𝑁 𝛽,
1

𝑇
⋅
1

ො𝜎𝑚
2 Σ

𝑇Σ ∼ 𝑊 𝑇 − 2, Σ
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The Distribution of 𝛼.

Notice that 𝑊 (𝑥, 𝑦) stands for the Wishart distribution with 

𝑥 = 𝑇 − 2 degrees of freedom and a parameter matrix 𝑦 = σ. 
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The Wald Test

Recall, if

𝑋 ∼ 𝑁 𝜇, Σ then   𝑋 − 𝜇 Σ−1 𝑋 − 𝜇 ∼ 𝜒2 𝑁

Here we test             

𝐻0: ො𝛼 = 0
𝐻1: ො𝛼 ≠ 0

where ො𝛼~
𝐻0𝑁 0, Σ𝛼

The Wald statistic is ො𝛼′ Σ𝛼
−1 ො𝛼 ∼ 𝜒2 𝑁
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The Wald Test

which becomes:

𝐽1 = 𝑇 1 +
ො𝜇𝑚
𝑒

ො𝜎𝑚

2 −1

ො𝛼′ Σ−1 ො𝛼 = 𝑇
ො𝛼′ Σ−1 ො𝛼

1 + 𝑆 𝑅𝑚
2

where 𝑆 𝑅𝑚 is the Sharpe ratio of the market factor.
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Algorithm for Implementation

The algorithm for implementing the statistic is as follows:

Run separate regressions for the test assets on the common 

factor:

𝑟1
𝑒

𝑇×1
= 𝑋

𝑇×2
θ1
2×1

+ ε1
𝑇×1

⋮
𝑟𝑁
𝑒

𝑇×1
= 𝑋

𝑇×2
θ𝑁
2×1

+ ε𝑁
𝑇×1

where 
�𝑇×2 =

1, 𝑟𝑚1
𝑒

⋮
1, 𝑟𝑚𝑇

𝑒

𝜃𝑖 = 𝛼𝑖 , 𝛽𝑖
′
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Algorithm for Implementation

Retain the estimated regression intercepts        

ො𝛼 = ො𝛼1, ො𝛼2, … , ො𝛼𝑁
′ and Ƹ𝜀

𝑇×𝑁
= Ƹ𝜀1, ⋯ , Ƹ𝜀𝑁

Compute the residual covariance matrix 

Σ =
1

𝑇
Ƹ𝜀′ Ƹ𝜀
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Algorithm for Implementation

Compute the sample mean and the sample variance of the 

factor.

Compute 𝐽1.
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The Likelihood Ratio Test

We run the unrestricted and restricted specifications:

un: 𝑟𝑡
𝑒 = 𝛼 + 𝛽𝑟𝑚𝑡

𝑒 + 𝜀𝑡 𝜀𝑡 ∼ 𝑁 0, Σ

res: 𝑟𝑡
𝑒 = 𝛽∗𝑟𝑚𝑡

𝑒 + 𝜀𝑡
∗ 𝜀𝑡

∗ ∼ 𝑁 0, Σ∗

Using MLE, we get:
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The Likelihood Ratio Test

መ𝛽∗ =
σ𝑡=1
𝑇 𝑟𝑡

𝑒 𝑟𝑚𝑡
𝑒

σ𝑡=1
𝑇 𝑟𝑚𝑡

𝑒 2

Σ∗ =
1

𝑇


𝑡=1

𝑇

Ƹ𝜀𝑡
∗ Ƹ𝜀𝑡

∗′

መ𝛽∗ ∼ 𝑁 𝛽,
1

𝑇

1

ො𝜇𝑚
𝑒 2 + ො𝜎𝑚

2 Σ

𝑇Σ∗ ∼ 𝑊 𝑇 − 1, Σ
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The LR Test

𝐿𝑅 = ln 𝐿∗ − ln 𝐿 = −
𝑇

2
ln Σ∗ − ln Σ

𝐽2 = −2𝐿𝑅 = 𝑇 ln Σ∗ − ln Σ ∼ 𝜒2 𝑁

Using some algebra, one can show that

𝐽1 = 𝑇 exp
𝐽2
𝑇

− 1

Thus, 

𝐽2 = 𝑇 ⋅ ln
𝐽1
𝑇
+ 1
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GRS (1989)

Theorem: let �
𝑁×1

~𝑁 0, Σ

let A
𝑁×𝑁

~𝑊 𝜏, Σ where 𝜏 ≥ 𝑁

and let A and X be independent then

𝜏 − 𝑁 + 1

𝑁
𝑋′𝐴−1𝑋 ∼ 𝐹𝑁,𝜏−𝑁+1

Professor Doron Avramov, Financial Econometrics239



GRS (1989)

In our context:

𝑋 = 𝑇 1 +
ො𝜇𝑚
𝑒

ො𝜎𝑚

2 −
1
2

ො𝛼 ∼
𝐻0𝑁 0, Σ

𝐴 = 𝑇Σ ∼ 𝑊 𝜏, Σ

where

𝜏 = 𝑇 − 2

Then:   

𝐽3 =
𝑇 − 𝑁 − 1

𝑁
1 +

ො𝜇𝑚
𝑒

ො𝜎𝑚

2 −1

ො𝛼′ Σ−1 ො𝛼 ∼ 𝐹 𝑁, 𝑇 − 𝑁 − 1

This is a finite-sample test.
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GMM

I will directly give the statistic without derivation:

𝐽4 = 𝑇 ො𝛼′ 𝑅 𝐷𝑇
′ 𝑆𝑇

−1𝐷𝑇
−1
𝑅′

−1
⋅ ො𝛼 ∼

𝐻0 𝜒2 (𝑁)

where

𝑅
𝑁×2𝑁

= 𝐼𝑁
𝑁×𝑁

, 0
𝑁×𝑁

𝐷𝑇 = −
1, ො𝜇𝑚

𝑒

ො𝜇𝑚
𝑒 , ො𝜇𝑚

𝑒 2 + ො𝜎𝑚
2 ⊗ 𝐼𝑁
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GMM

Assume no serial correlation but Heteroskedasticity:

𝑆𝑇 =
1

𝑇


𝑡=1

𝑇

𝑥𝑡𝑥𝑡
′ ⊗ Ƹ𝜀𝑡 Ƹ𝜀𝑡

′

where

𝑥𝑡 = 1, 𝑟𝑚𝑡
𝑒 ′

Under homoscedasticity and serially uncorrelated moment 

conditions: 𝐽4 = 𝐽1.

That is, the GMM statistic boils down to the WALD.
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The Multi-Factor Version of Asset Pricing Tests

𝑟𝑡
𝑒

𝑁×1
= Ƚ

𝑁×1
+ Ⱦ

𝑁×𝐾
⋅ 𝐹𝑡
𝐾×1

+ ε𝑡
𝑁×1

𝐽1 = 𝑇 1 + ො𝜇𝐹
′ Σ𝐹

−1 ො𝜇𝐹
−1
ො𝛼′ Σ−1 ො𝛼 ∼ 𝜒 𝑁

𝐽2 follows as described earlier.

𝐽3 =
𝑇 − 𝑁 − 𝐾

𝑁
1 + ො𝜇𝐹

′ Σ𝐹
−1 ො𝜇𝐹

−1
ො𝛼′ Σ−1 ො𝛼 ∼ 𝐹 𝑁,𝑇−𝑁−𝐾

where ො𝜇𝐹 is the mean vector of the factor based return spreads.
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The Multi-Factor Version of Asset Pricing Tests

σ𝐹 is the variance covariance matrix of the factors.

For instance, considering the Fama-French model:

ො𝜇𝐹 =

ො𝜇𝑚
𝑒

ො𝜇𝑆𝑀𝐵

ො𝜇𝐻𝑀𝐿

Σ𝐹 =

ො𝜎𝑚
2 , ො𝜎𝑚,𝑆𝑀𝐵 , ො𝜎𝑚,𝐻𝑀𝐿

ො𝜎𝑆𝑀𝐵,𝑚, ො𝜎𝑆𝑀𝐵
2 , ො𝜎𝑆𝑀𝐵,𝐻𝑀𝐿

ො𝜎𝐻𝑀𝐿,𝑚, ො𝜎𝐻𝑀𝐿,𝑆𝑀𝐵, ො𝜎𝐻𝑀𝐿
2
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The Current State of Asset Pricing Models

The CAPM has been rejected in asset pricing tests.

The Fama-French model is not a big success.

Conditional versions of the CAPM and CCAPM display some 

improvement.

Should decision-makers abandon a rejected CAPM?
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Should a Rejected CAPM be Abandoned?

Often a misspecified model can improve estimation. 

In particular, assume that expected stock return is given by

𝜇𝑖 = 𝛼𝑖 + 𝑅𝑓 + 𝛽𝑖 𝜇𝑚 − 𝑅𝑓 where 𝛼𝑖 ≠ 0

You estimate 𝜇𝑖 using the sample mean and the misspecified 

CAPM:

ො𝜇𝑖
1
=

1

𝑇
σ𝑡=1
𝑇 𝑅𝑖𝑡

ො𝜇𝑖
2
= 𝑅𝑓 + መ𝛽𝑖 ො𝜇𝑚 − 𝑅𝑓
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Mean Squared Error (MSE)

The quality of estimates is evaluated based on 

the Mean Squared Error (MSE)

𝑀𝑆𝐸 1 = 𝐸 ො𝜇𝑖
1
− 𝜇𝑖

2

𝑀𝑆𝐸 2 = 𝐸 ො𝜇𝑖
2
− 𝜇𝑖

2
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MSE, Bias, and Noise of Estimates

Notice that 𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑉𝑎𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

Of course, the sample mean is unbiased thus

𝑀𝑆𝐸 1 = 𝑉𝑎𝑟 ො𝜇𝑖
1

However, the CAPM is rejected, thus

𝑀𝑆𝐸 2 = 𝛼𝑖
2 + 𝑉𝑎𝑟 ො𝜇𝑖

2
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The Bias-Variance Tradeoff

It might be the case that 𝑉𝑎𝑟 ො𝜇 2 is significantly lower than 

𝑉𝑎𝑟 ො𝜇 1 - thus even when the CAPM is rejected, still zeroing out 

𝛼𝑖 could produce a smaller mean square error. 
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When is the Rejected CAPM Superior?

𝑉𝑎𝑟 ො𝜇𝑖
1

=
1

𝑇
𝜎2 𝑅𝑖 =

1

𝑇
𝛽𝑖
2𝜎2 𝑅𝑚 + 𝜎2 𝜀𝑖

𝑉𝑎𝑟 ො𝜇𝑖
2

= 𝑉𝑎𝑟 መ𝛽𝑖 ො𝜇𝑚
𝑒
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When is the Rejected CAPM Superior?

Using variance decomposition

𝑉𝑎𝑟 ො𝜇𝑖
2

= 𝑉𝑎𝑟 መ𝛽𝑖 ො𝜇𝑚
𝑒 = 𝐸 𝑉𝑎𝑟 መ𝛽𝑖 ො𝜇𝑚

𝑒 | ො𝜇𝑚
𝑒 + 𝑉𝑎𝑟 𝐸 መ𝛽𝑖 ො𝜇𝑚

𝑒 | ො𝜇𝑚
𝑒

= 𝐸 ො𝜇𝑚
𝑒 2 𝜎

2 𝜀𝑖

ෝ𝜎𝑚
2 ⋅

1

𝑇
+ 𝑉𝑎𝑟 𝛽𝑖 ො𝜇𝑚

𝑒 =
1

𝑇
𝜎2 𝜀𝑖 𝐸

ෝ𝜇𝑚
𝑒

ෝ𝜎𝑚
2

2

+ 𝛽𝑖
2 ෝ𝜎𝑚

2

𝑇

=
1

𝑇
𝑆𝑅𝑚𝜎

2 𝜀𝑖 + 𝛽𝑖
2 ො𝜎𝑚

2

where

𝑆𝑅𝑚 = 𝐸
ෝ𝜇𝑚
𝑒

ෝ𝜎𝑚
2

2
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When is the Rejected CAPM Superior?

Then

𝑉𝑎𝑟 ො𝜇𝑖
2

𝑉𝑎𝑟 ො𝜇𝑖
1

=
𝑆𝑅𝑚𝜎

2 𝜀𝑖 + 𝛽𝑖
2𝜎𝑚

2

𝜎2 𝑅𝑖
= 𝑆𝑅𝑚 1 − 𝑅2 + 𝑅2

where 𝑅2 is the 𝑅 squared in the market regression.

Since 𝑆𝑅𝑚 is small -- the ratio of the variance estimates is 

smaller than 1.
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Example

Let 

𝜎2 𝑅𝑖 = 0.01

𝐸
ො𝜇𝑚
𝑒

ො𝜎𝑚

2

= 0.05

𝑅2 = 0.3

For what values of 𝛼𝑖 ≠ 0 it is still preferred to use the CAPM?

Find 𝛼𝑖 such that the MSE of the CAPM is smaller.
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Example

𝑀𝑆𝐸 2

𝑀𝑆𝐸 1
= 𝑆𝑅𝑚 1 − 𝑅2 + 𝑅2 +

𝛼𝑖
2

𝑀𝑆𝐸 1
< 1

0.05 × 0.7 + 0.3 +
𝛼𝑖
2

1
60

⋅ 0.01
< 1

𝛼𝑖
2 <

1

60
⋅ 0.01 × 0.665

𝛼𝑖 < 0.01528 = 1.528%
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Economic versus Statistical Factors

Factors such as the market portfolio, SMB, HML, WML, 

TERM, SPREAD are pre-specified.

Such factors are considered to be economically based.

For instance, Fama and French argue that SMB and HML 

factors are proxying for underlying state variables in the 

economy.
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Economic versus Statistical Factors

Statistical factors are derived using econometric procedures on 

the covariance matrix of stock return.

Two prominent methods are the factor analysis and the 

principal component analysis (PCA).

Such methods are used to extract common factors.

The first factor typically has a strong (about 96%) correlation 

with the market portfolio.

Later, I will explain the PCA.
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The Economics of Time Series Test Statistics

Let us summarize the first three test statistics:

𝐽1 = 𝑇
ො𝛼′ Σ−1 ො𝛼

1 + 𝑆 𝑅𝑚
2

𝐽2 = 𝑇 ⋅ ln
𝐽1
𝑇
+ 1

𝐽3 =
𝑇 − 𝑁 − 1

𝑁

ො𝛼′ Σ−1 ො𝛼

1 + 𝑆 𝑅𝑚
2
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The Economics of Time Series Test Statistics

The 𝐽4 statistic, the GMM based asset pricing test, is actually a 

Wald test, just like J1, except that the covariance matrix of 

asset mispricing takes account of heteroscedasticity and often 

incorporates potential serial correlation.

Notice that all test statistics depend on the quantity 

ො𝛼 ′Σ−1 ො𝛼
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The Economics of the Time Series Tests

GRS show that this quantity has a very insightful 

representation.

Let us provide the steps.
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

Consider an investment universe that consists of 𝑁 + 1 assets -

the 𝑁 test assets as well as the market portfolio.

The expected return vector of the 𝑁 + 1 assets is given by
λ

𝑁+1 ×1
= ොμ𝑚

𝑒 ,
1×1

ොμ𝑒′
1×𝑁

′

where ො𝜇𝑚
𝑒 is the estimated expected excess return on the 

market portfolio and ො𝜇𝑒 is the estimated expected excess return 

on the 𝑁 test assets.
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

The variance covariance matrix of the 𝑁 + 1 assets is given by

Φ
𝑁+1 × 𝑁+1

=
ො𝜎𝑚
2 , መ𝛽′ ො𝜎𝑚

2

መ𝛽 ො𝜎𝑚
2 , 𝑉

where

ො𝜎𝑚
2 is the estimated variance of the market factor.

መ𝛽 is the N-vector of market loadings  and 𝑉 is the covariance 

matrix of the N test assets.
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

Notice that the covariance matrix of the N test assets is 

𝑉 = መ𝛽 መ𝛽′ ො𝜎𝑚
2 + Σ

The squared tangency portfolio of the 𝑁 + 1 assets is

𝑆 𝑅𝑇𝑃
2 = መ𝜆′Φ−1 መ𝜆
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

Notice also that the inverse of the covariance matrix is 

Φ−1 =
ො𝜎𝑚
2 −1 + መ𝛽′ Σ−1 መ𝛽, − መ𝛽′ Σ−1

−Σ−1 መ𝛽, Σ−1

Thus, the squared Sharpe ratio of the tangency portfolio could 

be represented as
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

𝑆 𝑅𝑇𝑃
2 =

ෝ𝜇𝑚
𝑒

ෝ𝜎𝑚

2

+ ො𝜇𝑒 − መ𝛽 ො𝜇𝑚
𝑒 ′ Σ−1 ො𝜇𝑒 − መ𝛽 ො𝜇𝑚

𝑒

𝑆 𝑅𝑇𝑃
2 = 𝑆 𝑅𝑚

2 + ො𝛼′ Σ−1 ො𝛼

or

ො𝛼′ Σ−1 ො𝛼 = 𝑆 𝑅𝑇𝑃
2 − 𝑆 𝑅𝑚

2
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

In words, the ො𝛼′ Σ−1 ො𝛼 quantity is the difference between the 

squared Sharpe ratio based on the 𝑁 + 1 assets and the 

squared Sharpe ratio of the market portfolio. 

If the CAPM is correct then these two Sharpe ratios are 

identical in population, but not identical in sample due to 

estimation errors.
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

The test statistic examines how close the two sample Sharpe 

ratios are.

Under the CAPM, the extra N test assets do not add anything 

to improving the risk return tradeoff.

The geometric description of ො𝛼′ Σ−1 ො𝛼 is given in the next slide. 
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

ො𝛼′ Σ−1 ො𝛼 = Φ1
2 −Φ2

2
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Understanding the Quantity ො𝛼′σ−1 ො𝛼.

So we can rewrite the previously derived test statistics as 

𝐽1 = 𝑇
𝑆 𝑅𝑇𝑃

2 − 𝑆 𝑅𝑚
2

1 + 𝑆 𝑅𝑚
2

~𝜒2 𝑁

𝐽3 =
𝑇 − 𝑁 − 1

𝑁
×
𝑆 𝑅𝑇𝑃

2 − 𝑆 𝑅𝑚
2

1 + 𝑆 𝑅𝑚
2

~𝐹 𝑁, 𝑇 − 𝑁 − 1
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Session #6: Asset Pricing Models with Time 

Varying Beta
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Asset Pricing Models with Time Varying Beta

We consider for simplicity only the one factor CAPM –

extensions follow the same vein.

Let us model beta variation with the lagged dividend yield or 

any other macro variable – again for simplicity we consider 

only one information, predictive, macro, or lagged variable.
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Asset Pricing Models with Time Varying Beta

Typically, the set of predictive variables contains the dividend 

yield, the term spread, the default spread, the yield on a T-bill, 

inflation, lagged market return, market volatility, market 

illiquidity, etc.
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Conditional Models

Here is a conditional asset pricing specification:

𝑟𝑖𝑡
𝑒 = 𝛼𝑖 + 𝛽𝑖𝑡𝑟𝑚𝑡

𝑒 + 𝜀𝑖𝑡

𝛽𝑖𝑡 = 𝛽𝑖0 + 𝛽𝑖1𝑧𝑡−1

𝑧𝑡 = 𝑎 + 𝑏𝑧𝑡−1 + 𝜂𝑡

𝐸(𝑟𝑚𝑡
𝑒 |𝑧𝑡−1) = 𝜇𝑚

𝑒

cov ( 𝜀𝑖𝑡 , 𝜂𝑡) = 0
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Conditional Asset Pricing Models

Substituting beta back into the asset pricing equation yields. 

𝑟𝑖𝑡
𝑒 = 𝛼𝑖 + 𝛽𝑖0𝑟𝑚𝑡

𝑒 + 𝛽𝑖1𝑟𝑚𝑡
𝑒 𝑧𝑡−1 + 𝜀𝑖𝑡

Interestingly, the one factor conditional CAPM becomes a two 

factor unconditional model – the first factor is the market 

portfolio, while the second is the interaction of the market with 

the lagged variable.
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Conditional Asset Pricing Models

You can use the statistics 𝐽1 through 𝐽4 to test such models.

If we have 𝐾 factors and 𝑀 predictive variables then the 

K-conditional factor model becomes a 𝐾 + 𝐾𝑀 - unconditional 

factor model.

If you only scale the market beta, as is typically the case, we 

have an 𝑀 +𝐾 unconditional factor model.
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Conditional Moments

Suppose you are at time 𝑡 – what is the discount factor for time

𝑡 + 2?

𝑟𝑖𝑡+2
𝑒 = 𝛼𝑖 + 𝛽𝑖0𝑟𝑚𝑡+2

𝑒 + 𝛽𝑖1𝑟𝑚𝑡+2
𝑒 𝑧𝑡+1 + 𝜀𝑖𝑡+2

= 𝛼𝑖 + 𝛽𝑖0𝑟𝑚𝑡+2
𝑒 + 𝛽𝑖1𝑟𝑚𝑡+2

𝑒 × 𝑎 + 𝑏𝑧𝑡 + 𝜂𝑡+1 + 𝜀𝑖𝑡+2

= 𝛼𝑖 + 𝛽𝑖0𝑟𝑚𝑡+2
𝑒 + 𝑎𝛽𝑖1𝑟𝑚𝑡+2

𝑒 + 𝛽𝑖1𝑏𝑟𝑚𝑡+2
𝑒 𝑧𝑡 + 𝛽𝑖1𝑟𝑚𝑡+2

𝑒 𝜂𝑡+1 + 𝜀𝑖𝑡+2
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Conditional Moments

𝐸 𝑟𝑖𝑡+2
𝑒 ห𝑧𝑡 = 𝛼𝑖 + 𝛽𝑖0𝜇𝑚

𝑒 + 𝑎𝛽𝑖1𝜇𝑚
𝑒 + 𝛽𝑖1𝑏𝜇𝑚

𝑒 𝑧𝑡

= 𝛼𝑖 + 𝛽𝑖0 + 𝑎𝛽𝑖1 𝜇𝑚
𝑒 + 𝛽𝑖1𝑏𝜇𝑚

𝑒 𝑧𝑡

Notice that here the discount factor, or the conditional expected 

return, is no longer constant through time.

Rather, it varies with the macro variable. 
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Conditional Moments

Could you derive a general formula – in particular – you are at 

time 𝑡 what is the expected return for time 𝑡 + 𝑇 as a function of 

the model parameters as well as 𝑧𝑡?
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Conditional Moments

Next, the conditional covariance matrix – the covariance at 

time 𝑡 + 1 given 𝑧𝑡 – is given by

𝑉 𝑟𝑡+1
𝑒 ห𝑧𝑡 = 𝛽0 + 𝛽1𝑧𝑡 𝛽0 + 𝛽1𝑧𝑡

′𝜎𝑚
2 + Σ

where 𝛽0 and 𝛽1 are the N-asset versions of 𝛽𝑖0 and 𝛽𝑖1
respectively.
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Conditional Moments

Could you derive a general formula – in particular – you are at 

time 𝑡 what is the conditional covariance matrix for time 𝑡 + 𝑇
as a function of the model parameters as well as 𝑧𝑡?

Could you derive general expressions for the conditional 

moments of cumulative return?
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Conditional versus Unconditional Models

There are different ways to model beta variation. Here we used 

lagged predictive variables; other applications include using firm 

level variables such as size and book market to scale beta as well 

as modeling beta as an autoregressive process.
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Conditional versus Unconditional Models

You can also model time variation in the risk premiums in 

addition to or instead of beta variations.

Asset pricing tests show that conditional models typically 

outperform their unconditional counterparts.
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Different Ways to Model Beta Variation

The base case: beta is constant, or time invariant.

Case II: beta varies with macro conditions 

𝛽𝑖𝑡 = 𝛽𝑖0 + 𝛽𝑖1𝑧𝑡−1

𝑧𝑡 = 𝑎 + 𝑏𝑧𝑡−1 + 𝜀𝑡
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Different Ways to Model Beta Variation

Case III: beta varies with firm-level size and the 

book-to-market ratio

𝛽𝑖𝑡 = 𝛽𝑖0 + 𝛽𝑖1𝑠𝑖𝑧𝑒𝑖,𝑡−1 + 𝛽𝑖2𝑏𝑚𝑖,𝑡−1

Case IV: beta is some function of both macro and firm-level 

variables as well as their interactions: 

𝛽𝑖𝑡 = 𝑓 𝑧𝑡−1, 𝑠𝑖𝑧𝑒𝑖,𝑡−1, 𝑏𝑚𝑖,𝑡−1
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Different Ways to Model Beta Variation

Case V: beta follows an auto-regressive AR(1) process

𝛽𝑖𝑡 = 𝑎 + 𝑏𝛽𝑖,𝑡−1 + 𝑣𝑖𝑡

Professor Doron Avramov, Financial Econometrics284



Single vs. Multiple Factors

Notice that we focus on a single factor single macro variable. 

We can expand the specification to include more factors and 

more macro and firm-level variables.

Even if we expand the number of factors it is common to model 

variation only in the market beta, while the other risk loadings 

are constant.

Some scholars model time variations in all factor loadings.
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Testing Conditional Models

You can implement the 𝐽1 − 𝐽4 test statistics only to those cases 

where beta is either constant or it varies with macro variables.

Those specifications involving firm-level characteristics require 

cross sectional tests.

The last specification (AR(1)) requires Kalman filtering 

methods involving state space representations.
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Session #7: GMVP, Tracking Error Volatility, 

Large scale covariance matrix
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GMVP

Of particular interest to academics and practitioners is the 

Global Minimum Volatility Portfolio.

For two distinct reasons:

1. No need to estimate the notoriously difficult to estimate 𝜇.

2. Low volatility stocks have been found to outperform high volatility 

stocks.

Professor Doron Avramov, Financial Econometrics288



GMVP Optimization

𝑚𝑖𝑛 𝑤′𝑉𝑤
𝑠. 𝑡 𝑤′𝜄 = 1

Solution: 𝑤𝐺𝑀𝑉𝑃 =
𝑉−1𝜄

𝜄′𝑉−1𝜄

No analytical solution in the presence of portfolio constraints –

such as no short selling.

Professor Doron Avramov, Financial Econometrics289



GMVP Optimization

Ex ante, the GMVP is the lowest volatility portfolio among all 

efficient portfolios.

Ex ante, it is also the lowest mean portfolio, but ex post it 

performs reasonably well in delivering high payoffs. That is 

related to the volatility anomaly: low volatility stocks have 

delivered, on average, higher payoffs than high volatility 

stocks.  
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The Tracking Error Volatility (TEV) Portfolio

Actively managed funds are often evaluated based on their 

ability to achieve high return subject to some constraint on 

their Tracking Error Volatility (TEV).

In that context, a managed portfolio can be decomposed into 

both passive and active components.

TEV is the volatility of the active component.
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The Tracking Error Volatility (TEV) Portfolio

The passive component is the benchmark portfolio. 

The benchmark  portfolio changes with the investment 

objective.

For instance, if you invest in S&P500 stocks the proper 

benchmark would be the S&P index.
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Tracking Error Volatility: 

The Benchmark and Active Portfolios

Let 𝑞 be the vector of weights of the benchmark portfolio. 

Then the expected return and variance of the benchmark 

portfolio are given by
𝜇𝐵 = 𝑞′𝜇

𝜎𝐵
2 = 𝑞′𝑉𝑞

where, as usual,  μ and 𝑉 are the vector of expected return and 

the covariance matrix of stock returns.
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Tracking Error Volatility: 

The Benchmark and Active Portfolios

The 𝑉 matrix can be estimated in different methods – most 

prominent of which will be discussed here.

The active fund manager attempts to outperform this benchmark. 

Let 𝑥 be the vector of deviations from the benchmark, or the active 

part of the managed portfolio.

Of course, the sum of all the components of 𝑥, by construction, must 

be equal to zero. 
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The Mathematics of TEV

So the fund manager invests 𝑤 = 𝑞 + 𝑥 in stocks, 𝑞 is the 

passive part of the portfolio and x is the active part.

Notice that 𝜎𝜉
2 = 𝑥′𝑉𝑥 is the tracking error variance.

Also notice that the expected return and volatility of the chosen 

portfolio are
𝜇𝑝 = 𝜇𝐵 + 𝑥′𝜇

𝜎𝑝
2 = 𝑤′𝑉𝑤 = 𝜎𝐵

2 + 2𝑞′𝑉𝑥 + 𝜎𝜉
2
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The Mathematics of TEV

The optimization problem is formulated as

max
𝑥

𝑥′ 𝜇

𝑠. 𝑡. 𝑥′𝜄 = 0
𝑥′𝑉𝑥 = 𝜗
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The Mathematics of TEV

The resulting active part of the portfolio, 𝑥, is given by

𝑥 = ±
𝜗

𝑒
𝑉−1 𝜇 −

𝑎

𝑐
𝜄

where

𝜇′𝑉−1𝜇 = 𝑏

𝜇′𝑉−1𝜄 = 𝑎

𝜄′𝑉−1𝜄 = 𝑐
𝑎 − 𝑏2/𝑐 = 𝑒
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Caveats about the Minimum TEV Portfolio

Richard Roll (distinguished UCLA professor) points out that 
the solution is independent on the benchmark. 

Put differently, the active part of the portfolio 𝑥 is totally 
independent of the passive part 𝑞. 

Of course, the overall portfolio 𝑞 + 𝑥 is impacted by 𝑞. 

The unexpected result is that the active manager pays no 
attention to the assigned benchmark. So it does not really 
matter if the benchmark is S&P or any other index.
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TEV with total Volatility Constraint 
(based on Jorion – an Expert in Risk Management)

Given the drawbacks underlying the TEV portfolio we add one 

more constraint on the total portfolio volatility. 

The derived active portfolio displays two advantages. 

First, its composition does depend on the benchmark. 

Second, the systematic volatility of the portfolio is controlled by 

the investor.
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TEV with total volatility constraint

The optimization is formulated as   

max
𝑥

𝑥′ 𝜇

𝑠. 𝑡. 𝑥′𝜄 = 0
𝑥′𝑉𝑥 = 𝜗

(𝑞 + 𝑥)′𝑉(𝑞 + 𝑥) = 𝜎𝑝
2

Home assignment: derive the optimal solution.
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Estimating the Large Scale Covariance 

Matrix
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Estimating the Covariance Matrix:

There are various applications in financial economics which 

use the covariance matrix as an essential input.

The Global Minimum Variance Portfolio, the minimum 

tracking error volatility portfolio, the mean variance efficient 

frontier, and asset pricing tests are good examples. 

In what follows I will present the most prominent estimation 

methods of the covariance matrix. 
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The Sample Covariance Matrix (Denoted S)

This method uses sample estimates.

Need to estimate 𝑁(𝑁 + 1)/2 parameters which is a lot. 

You can use excel to estimate all variances and co-variances 

which is tedious and inefficient.

Here is a much more efficient method. 

Consider 𝑇 monthly returns on 𝑁 risky assets. 

We can display those returns in a 𝑇 by 𝑁 matrix 𝑅. 

Professor Doron Avramov, Financial Econometrics303



The Sample Covariance Matrix (Denoted S)

Estimate the mean return of the 𝑁 assets – and denote the 

N-vector of the mean estimates by ො𝜇.

 Next, compute the deviations of the return observations from 

their sample means:
𝐸 = 𝑅 − 𝜄 ො𝜇′

where 𝜄𝑇 is a T vector of ones.  Then the sample covariance 

matrix is estimated as

𝑆 =
1

𝑇
𝐸′ 𝐸
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The Equal Correlation Based 

Covariance Matrix (Denoted F):

Estimate all 𝑁(𝑁 − 1)/2 pair-wise correlations between any 
two securities and take the average. 

 Let ҧ𝜌 be that average correlation, let 𝑠𝑖𝑖 be the estimated 
variance of asset 𝑖, and let 𝑠𝑗𝑗 be the estimated variance of 
asset j, both estimates are the i-th and j-th elements of the 
diagonal of S. 

 Then the matrix F follows as 𝐹 𝑖, 𝑖 = 𝑠𝑖𝑖
𝐹 𝑖, 𝑗 = ҧ𝜌 𝑠𝑖𝑖𝑠𝑗𝑗
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The Factor Based Covariance Matrix:

Consider the time series regression

𝑟𝑡 = 𝛼 + 𝛽 × 𝐹𝑡 + 𝑒𝑡

where 𝑟𝑡 is an N vector of returns at time t and 𝐹𝑡 is a set of 

𝐾 factors. Factor means are denoted by 𝜇𝐹

Notice that the mean return is given by

𝜇 = 𝛼 + 𝛽 × 𝜇𝐹
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The Factor Based Covariance Matrix

Thus deviations from the means are given by

𝑟𝑡 − 𝜇 = 𝛽 × 𝐹𝑡 − 𝜇𝐹 + 𝑒𝑡

 The factor based covariance matrix is estimated by
𝑉 = መ𝛽σ𝐹𝐹

መ𝛽′ + Ψ

Here, መ𝛽 is an 𝑁 by 𝐾 matrix of factor loadings and Ψ is a 

diagonal matrix with each element represents the 

idiosyncratic variance of each of the assets.
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The Factor Based Covariance Matrix –

Number of Parameters

This procedure requires the estimation of 𝑁𝐾 betas as well as 𝐾
variances of the factors, 𝐾(𝐾 − 1)/2 correlations of those 

factors, and 𝑁 firm specific variances.

Overall, you need to estimate  𝑁𝐾 + 𝐾 + 𝐾(𝐾 − 1)/2 + 𝑁
parameters, which is considerably less than 𝑁(𝑁 + 1)/2 since 𝐾
is much smaller than 𝑁. 

For instance, using a single factor model – the number of 

parameters to be estimated is only 2𝑁 + 1.
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Steps for Estimating 

the Factor Based Covariance Matrix

1. Run the MULTIVARIATE regression of stock returns on asset 

pricing factors

𝑅
𝑇×𝑁

= 𝜄
𝑇×1

𝛼′
1×𝑁

+ 𝐹
𝑇×𝐾

𝛽′
𝐾×𝑁

+ 𝐸
𝑇×𝑁

= 𝐹
𝑇× 𝐾+1

⋅ 𝜃′
𝐾+1 ×𝑁

+ 𝐸
𝑇×𝑁

where 𝐹 = 𝜄𝑇 , 𝐹

𝜃 = 𝛼, 𝛽
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Steps for Estimating 

the Factor Based Covariance Matrix

2. Estimate 𝜃

መ𝜃 = 𝐹′ 𝐹
−1 𝐹′𝑅

′
= 𝑅′ 𝐹 𝐹′ 𝐹

−1
= ො𝛼, መ𝛽

and retain 𝛽 only.
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Steps for Estimating 

the Factor Based Covariance Matrix

3. Estimate the covariance matrix of 𝐸

Δ
𝑁×𝑁

=
1

𝑇
𝐸′
𝑁×𝑇

𝐸
𝑇×𝑁

4. Let Ψ be a diagonal matrix with the (i,i)-th component being 

equal to the (i,i)-th component of Δ.
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Steps for Estimating 

the Factor Based Covariance Matrix

5. Compute 𝑉
𝑇×𝐾

= 𝐹
𝑇×𝐾

- 𝜄
𝑇×1

⋅ ො𝜇′𝑓
1×𝐾

where ො𝜇𝑓 is the mean return of the factors. 

6. Estimate: σ𝐹
𝐾×𝐾

=
1

𝑇
𝑉′
𝐾×𝑇

⋅ 𝑉
𝑇×𝐾
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Steps for Estimating 

the Factor Based Covariance Matrix

7. 𝑉
𝑁×𝑁

= መ𝛽
𝑁×𝐾

σ𝑓
𝐾×𝐾

𝛽′
𝐾×𝑁

+ Ψ
𝑁×𝑁

This is the estimated covariance matrix of stock returns. 

8. Notice – there is no need to run N individual regressions! Use 

multivariate specifications.
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A Shrinkage Approach –

Based on a Paper by Ledoit and Wolf (LW)

There is a well perceived paper (among Wall Street quants) by 

LW demonstrating an alternative approach to estimating the 

covariance matrix. 

It had been claimed to deliver superior performance in 

reducing tracking errors relative to benchmarks as well as 

producing higher Sharpe ratios. 

Here are the formal details.
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A Shrinkage Approach –

Based on a Paper by Ledoit and Wolf (LW)

Let 𝑆 be the sample covariance matrix, let 𝐹 be the equal 

correlation based covariance matrix, and let 𝛿 be the shrinkage 

intensity. 𝑆 and 𝐹 were derived earlier.

The operational shrinkage estimator of the covariance matrix 

is given by ത𝑉 = መ𝛿∗ × 𝐹 + (1 − መ𝛿∗) × 𝑆

Notice that F is the shrinkage target.
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The Shrinkage Intensity

LW propose the following shrinkage intensity, based on 

optimization:

መ𝛿∗ = max 0,min
𝑘

𝑇
, 1

where 𝑇 is the sample size and 𝑘 is given as 𝑘 =
𝜋−𝜂

𝛾

and where 𝛾 = σ𝑖=1
𝑁 σ𝑗=1

𝑁 (𝑓𝑖𝑗 − 𝑠𝑖𝑗)
2 with 𝑠𝑖𝑗 being the (𝑖, 𝑗)

component of 𝑆 and 𝑓𝑖𝑗 is the (𝑖, 𝑗) component of 𝐹.
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The Shrinkage Intensity

𝜋 =

𝑖=1

𝑁



𝑗=1

𝑁

𝜋𝑖𝑗

𝜋𝑖𝑗 =
1

𝑇


𝑡=1

𝑇

{(𝑟𝑖𝑡 − ҧ𝑟𝑖)(𝑟𝑗𝑡 − 𝑟𝑗
_
) − 𝑠𝑖𝑗}

2

𝜂 =

𝑖=1

𝑁

𝜋𝑖𝑖 +

𝑖=1

𝑁



𝑗=1,𝑗≠𝑖

𝑁
ҧ𝜌

2

𝑠𝑗𝑗

𝑠𝑖𝑖
𝜗𝑖𝑖,𝑖𝑗 +

𝑠𝑖𝑖
𝑠𝑗𝑗

𝜗𝑗𝑗,𝑖𝑗

𝜗𝑖𝑖,𝑖𝑗 =
1

𝑇


𝑡=1

𝑇

(𝑟𝑖𝑡 − 𝑟𝑖
_
)2−𝑠𝑖𝑖 (𝑟𝑖𝑡 − 𝑟𝑖

_
) (𝑟𝑗𝑡 − 𝑟𝑗

_
) − 𝑠𝑖𝑗

𝜗𝑗𝑗,𝑖𝑗 =
1

𝑇


𝑡=1

𝑇

(𝑟𝑗𝑡 − ҧ𝑟𝑗)
2−𝑠𝑗𝑗 (𝑟𝑖𝑡 − 𝑟𝑖

_
) (𝑟𝑗𝑡 − 𝑟𝑗

_
) − 𝑠𝑖𝑗

and with 𝑟𝑖𝑡 and ҧ𝑟𝑖 being the time 𝑡 return on asset 𝑖 and the time-series 
average of return on asset 𝑖, respectively.
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The Shrinkage Intensity – A Naïve Method

If you get overwhelmed by the derivation of the shrinkage 

intensity it would still be useful to use a naïve shrinkage 

approach, which often even works better. For instance, you can 

take equal weights:

ത𝑉 =
1

2
𝐹 +

1

2
𝑆
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Backtesting

We have proposed several methods for estimating the 

covariance matrix.

Which one dominates?

We can backtest all specifications.

That is, we can run a “horse race” across the various models 

searching for the best performer. 

There are two primary methods for backtesting – rolling versus 

recursive schemes. 
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The Rolling Scheme

You define the first estimation window.

It is well received to use the first 60 sample observations as the 

first estimation window.

Based on those 60 observations derive the GMVP under each of 

the following methods:
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Competing Covariance Estimates

The sample based covariance matrix

The equal correlation based covariance matrix

Factor model using the market as the only factor

Factor model using the Fama French three factors

Factor  model using the Fama French plus Momentum factors

The LW covariance matrix – either the full or the naïve 

method.
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Out of Sample Returns

Then given the GMVPs compute the actual returns on each of 

the derived strategies. 

For instance, if the derived strategy at time t is 𝑤𝑡 then the 

realized return at time t+1 would be 

𝑅𝑝,𝑡+1 = 𝑤𝑡
′ × 𝑅𝑡+1

where 𝑅𝑡+1 is the realized return at time 𝑡 + 1 on all the 𝑁
investable assets.
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Out of Sample Returns

Suppose you rebalance every six months – derive the out of 
sample returns also for the following 5 months

𝑅𝑝,𝑡+2 = 𝑤𝑡
′ × 𝑅𝑡+2

𝑅𝑝,𝑡+3 = 𝑤𝑡
′ × 𝑅𝑡+3

𝑅𝑝,𝑡+4 = 𝑤𝑡
′ × 𝑅𝑡+4

𝑅𝑝,𝑡+5 = 𝑤𝑡
′ × 𝑅𝑡+5

𝑅𝑝,𝑡+6 = 𝑤𝑡
′ × 𝑅𝑡+6

 Then at time t+6 you re-derive the GMVPs.
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The Recursive Scheme

A recursive scheme is using an expanding window.

That is, you first estimate the GMVPs based on the first 60 

observations, then based on 66 observations, and so on, while 

in the rolling scheme you always use the last 60 observations.

Pros: the recursive scheme uses more observations.

Cons: since the covariance matrix may be time varying perhaps 

you better drop initial observations.
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Out of Sample Returns

So you generate out of sample returns on each of the strategies 

starting from time 𝑡 + 1 till the end of sample, which we 

typically denote by 𝑇.

Next, you can analyze the out of sample returns.

For instance, you can form the table on the next page and 

examine which specification has been able to deliver the best 

performance.
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Out of Sample Returns

Rolling Scheme Recursive Scheme

S F MKT FF
FF+

MOM
LW S F MKT FF

FF+

MOM
LW

Mean

STD

SR

SP 

(5%)

alpha

IR
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Out of Sample Returns

In the above table:

Mean is the simple mean of the out of sample returns

STD is the volatility of those returns

SR is the associated Sharpe ratio obtained by dividing the 
difference between the mean return and the mean risk free 
rate by STD.

SP is the shortfall probability with a 5% threshold applied to 
the monthly returns.
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Out of Sample Returns

In the above table:

alpha is the intercept in the regression of out of sample 

EXCESS returns on the contemporaneous market factor 

(market return minus the risk-free rate).

IR is the information ratio – obtained by dividing alpha by the 

standard deviation of the regression error, not the STD above.

Of course, higher SR, higher alpha, higher IR are associated 

with better performance.
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High Frequency Data

Let 𝑟𝑡 denote the continuously compounded one-year return for 

year 𝑡, where 𝑟𝑡 are independent variables from 𝑁 𝜇, 𝜎2 (iid).

Based on 𝑇 annual observations, we can estimate 𝜇 and 𝜎2: 

ො𝜇 =
1

𝑇
σ𝑡=1
𝑇 𝑟𝑡, and ො𝜎2 =

1

𝑇−1
σ𝑡=1
𝑇 𝑟𝑡 − ො𝜇 2.

We have 𝑉𝑎𝑟 ො𝜇 =
ෝ𝜎2

𝑇
and 𝑉𝑎𝑟 ො𝜎2 =

2ෝ𝜎4

𝑇
.
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High Frequency Data – continued

Now, partition each year to 𝑁 equally-separated intervals (e.g., 

5 minutes), so that we have 𝑁 returns for each year 𝑡: 
𝑟𝑡,1, 𝑟𝑡,2, … , 𝑟𝑡,𝑁 so that 𝑟𝑡 = σ𝑛=1

𝑁 𝑟𝑡,𝑛.

Overall, we have 𝑇 ∙ 𝑁 observations, and denote: 𝜇𝑛 = 𝐸 𝑟𝑡,𝑛
(the expected return of one interval).

Using the iid property, we can estimate: ො𝜇𝑛 =
ෝ𝜇

𝑁
and ො𝜎𝑛

2 =
ෝ𝜎2

𝑁
.

And we have: 𝑉𝑎𝑟 ො𝜇 = 𝑁2𝑉𝑎𝑟 ො𝜇𝑛 and 𝑉𝑎𝑟 ො𝜎2 = 𝑁2𝑉𝑎𝑟 ො𝜎𝑛
2

.
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High Frequency Data – continued 

– The variance of Ƹ𝜇 and of ො𝜎2

As usual, 𝑉𝑎𝑟 ො𝜇𝑛 =
ෝ𝜎𝑛

2

𝑇𝑁

Therefore we have (also using the results from previous slide): 

𝑉𝑎𝑟 ො𝜇 = 𝑁2𝑉𝑎𝑟 ො𝜇𝑛 =
𝑁2ෝ𝜎𝑛

2

𝑇𝑁
=

𝑁ෝ𝜎𝑛
2

𝑇
=

ෝ𝜎2

𝑇
.

The conclusion regarding ො𝜇: its variance is the same whether it 

is estimated based on 𝑇 annual observations or whether it is 

estimated using 𝑇 ∙ 𝑁 high-frequency observations.

There is no gain in using high-frequency observations. 

We will see a different result for ො𝜎2.
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High Frequency Data – continued 

– The variance of Ƹ𝜇 and of ො𝜎2

What is the variance of ො𝜎2 based on 𝑇 ∙ 𝑁 high-frequency 

observations?

As usual, 𝑉𝑎𝑟 ො𝜎𝑛
2 =

2ෝ𝜎𝑛
4

𝑇𝑁
.

 𝑉𝑎𝑟 ො𝜎2 = 𝑁2𝑉𝑎𝑟 ො𝜎𝑛
2 =

2𝑁2ෝ𝜎𝑛
4

𝑇𝑁
=

1

𝑁
∙
2ෝ𝜎4

𝑇
.

The variance of ො𝜎2 is much smaller with the partitioning !

Moreover, the larger the partition is (i.e., 𝑁 is larger), the 

smaller the variance of the variance is.
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Session #8: Principal Component Analysis 

(PCA)
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PCA

The aim is to extract 𝐾 common factors to summarize the 

information of a panel of rank 𝑁.

In particular, we have a 𝑇 × 𝑁 panel of stock returns where 𝑇 is 

the time dimension and 𝑁 (< 𝑇) is the number of firms – of 

course 𝐾 << 𝑁

�
𝑇×𝑁

= 𝑅1, … , 𝑅𝑁

The PCA is an operation on the sample covariance matrix of 

stock returns.
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PCA

You have returns on 𝑁 stocks for 𝑇 periods

𝑅1
𝑇×1

, … , 𝑅𝑁
𝑇×1

෨𝑅1 = 𝑅1 − ො𝜇1… ෨𝑅𝑁 = 𝑅𝑁 − ො𝜇𝑁

let
෨𝑅 = ෨𝑅1, ෨𝑅2, … , ෨𝑅𝑁

𝑉 =
1

𝑇
෨𝑅′ ෨𝑅
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PCA

Extract K-Eigen vectors corresponding to the largest K-Eigen 

values.

Each of the Eigen vector is an N by 1 vector.

The extraction mechanism is as follows. 

The first Eigen vector is obtained as

max
𝑊1

𝑤1
′ 𝑉𝑤1

𝑠. 𝑡 𝑤1
′𝑤1 = 1
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PCA

𝑤1 is an Eigen vector since
𝑉𝑤1 = 𝜆1𝑤1

Moreover

𝜆1 = 𝑤1
′ 𝑉𝑤1

𝜆1 is therefore the highest Eigen value.
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PCA

Extracting the second Eigen vector 

max
𝑤2

𝑤2
′ 𝑉𝑤2

𝑠. 𝑡 𝑤2
′𝑤2 = 1

𝑤1
′𝑤2 = 0
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PCA

The optimization yields:

𝑉𝑤2 = 𝜆2𝑤2

𝜆2 = 𝑤2
′ 𝑉𝑤2 < 𝜆1

The second Eigen value is smaller than the first due to the 

presence of one extra constraint in the optimization – the 

orthogonality constraint.
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PCA

The K-th Eigen vector is derived as

max 𝑤𝐾
′ 𝑉𝑤𝐾

𝑠. 𝑡 𝑤𝐾
′ 𝑤𝐾 = 1

𝑤𝐾
′ 𝑤1 = 0

𝑤𝐾
′ 𝑤2 = 0

⋮
𝑤𝐾
′ 𝑤𝐾−1 = 0
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PCA

The optimization yields:
𝑉𝑤𝐾 = 𝜆𝐾𝑤𝐾

𝜆𝐾 = 𝑤𝐾
′ 𝑉𝑤𝐾 < 𝜆𝐾−1 < ⋯ < 𝜆2 < 𝜆1
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PCA

Then - each of the K-Eigen vectors delivers a unique asset 

pricing factor.

Simply, multiply excess stock returns by the Eigen vectors:

𝐹1
𝑇×1

= 𝑅𝑒
𝑇×𝑁

⋅ 𝑤1
𝑁×1

⋮
𝐹𝐾
𝑇×1

= 𝑅𝑒
𝑇×𝑁

⋅ 𝑤𝐾
𝑁×1
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PCA

Recall, the basic idea here is to replace the original set of  𝑁
variables with a lower dimensional set of K-factors (𝐾 << 𝑁).

The contribution of the 𝑗-th Eigen vector to explain the 

covariance matrix of stock returns is

𝜆𝑗

σ𝑖=1
𝑁 𝜆𝑖
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PCA

Typically the first three Eigen vectors explain over and above 

95% of the covariance matrix.

What does it mean to “explain the covariance matrix”?  

Coming up soon!
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Understanding the PCA: Digging Deeper

The covariance matrix can be decomposed as

𝑉 = 𝑤1, … , 𝑤𝑁

𝜆1,… , 0

⋮ ⋱
0,… , 𝜆𝑁

𝑤1
′

⋮
𝑤𝑁

′
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Understanding the PCA: Digging Deeper

If some of the 𝜆 − 𝑠 are either zero or negative – the covariance 

matrix is not properly defined -- it is not positive definite.

In fixed income analysis – there are three prominent Eigen 

vectors, or three factors.

The first factor stands for the term structure level, the second 

for the term structure slope, and the third for the curvature of 

the term structure.
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Understanding the PCA: Digging Deeper

In equity analysis, the first few (up to three) principal 

components are prominent.

Others are around zero.

The attempt is to replace the sample covariance matrix  by the 

matrix ෨𝑉 which mostly summarizes the information in the 

sample covariance matrix.
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Understanding the PCA: Digging Deeper

The matrix ෨𝑉 is given by

෨𝑉
𝑁×𝑁

= 𝑤1, … , 𝑤𝑘

𝜆1,… , 0

⋮ ⋱
0,… , 𝜆𝑘

𝑤1
′

⋮
𝑤𝑘

′

Of course, the dimension  of ෨𝑉 is 𝑁 by 𝑁.

However, its rank is 𝐾, thus the matrix is not invertible.
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Is 𝑉 close to ෨𝑉?

This is the same as asking: what does it mean to explain the 

sample covariance matrix?
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Is 𝑉 close to ෨𝑉?

Let us represent returns as

𝑟1𝑡 = 𝛼1 + Ⱦ11𝑓1𝑡 + Ⱦ12𝑓2𝑡 +⋯+ Ⱦ1𝐾𝑓𝐾𝑡
ǁ𝑟1𝑡

+𝜀1𝑡 ∀𝑡 = 1,… , 𝑇

⋮
𝑟𝑁𝑡 = 𝛼𝑁 + Ⱦ𝑁1𝑓1𝑡 + Ⱦ𝑁2𝑓2𝑡 +⋯+ Ⱦ𝑁𝐾𝑓𝐾𝑡

ǁ𝑟𝑁𝑡

+𝜀𝑁𝑡 ∀𝑡 = 1,… , 𝑇
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Is 𝑉 close to ෨𝑉?

where 𝑓1𝑡 …𝑓𝐾𝑡 are the principal component based factors and 

𝛽𝑖1…𝛽𝑖𝐾 are the exposures of firm i to those factors.
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Is 𝑉 close to ෨𝑉?

 𝑉 is closed enough to ෨𝑉 - if 

1. The variances of the residuals cannot be dramatically reduced 

by adding more factors.

2. The pairwise cross-section correlations of the residuals cannot 

be considerably reduced by adding more factors.
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The Contribution of the PC-S 

to Explain Portfolio Variation

Let Ⱦ𝑖
𝐾×1

= 𝛽𝑖1, … , 𝛽𝑖𝐾
′ be the exposures of firm 𝑖 to the 𝐾

common factors.

Let 𝑤𝑝 be an N-vector of portfolio weights:

𝑤𝑝 = 𝑤1𝑝, 𝑤2𝑝, … , 𝑤𝑁𝑝 ′

Recall, 𝑅 is a 𝑇 × 𝑁 matrix of stock returns.
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The Contribution of the PC-S 

to Explain Portfolio Variation

The portfolio’s rate of return is 

𝑅𝑝
𝑇×1

= �
𝑇×𝑁

⋅ 𝑤𝑝
𝑁×1

Moreover, the portfolio time t return is given by

𝑅𝑝𝑡 = 𝑤1𝑝𝑟1𝑡 +𝑤2𝑝𝑟2𝑡 +⋯+𝑤𝑁𝑝𝑟𝑁𝑡 ≡ 𝑤𝑝
′ ⋅

1×𝑁

𝑟𝑡
𝑁×1
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The Contribution of the PC-S 

to Explain Portfolio Variation

We can approximate the portfolio’s rate of return as:

෨𝑅𝑝𝑡 = 𝑤1𝑝 𝛽11𝑓1𝑡 + 𝛽12𝑓2𝑡 +⋯+ 𝛽1𝐾𝑓𝐾𝑡

+𝑤2𝑝 𝛽21𝑓1𝑡 + 𝛽22𝑓2𝑡 +⋯+ 𝛽2𝐾𝑓𝐾𝑡

+ …………………………………

+𝑤𝑁𝑝 𝛽𝑁1𝑓1𝑡 + 𝛽𝑁2𝑓2𝑡 +⋯+ 𝛽𝑁𝐾𝑓𝐾𝑡
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The Contribution of the PC-S 

to Explain Portfolio Variation

Thus, ෨𝑅𝑝𝑡 = 𝛿1𝑓1𝑡 + 𝛿2𝑓2𝑡 +⋯+ 𝛿𝐾𝑓𝐾𝑡

where

𝛿1 = 𝑤𝑝
′

1×𝑁

⋅ 𝛽1
𝑁×1

𝛿2 = 𝑤𝑝
′

1×𝑁

⋅ 𝛽2
𝑁×1

⋮
𝛿𝐾 = 𝑤𝑝

′

1×𝑁

⋅ 𝛽𝑘
𝑁×1
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The Contribution of the PC-S 

to Explain Portfolio Variation

Notice that 

𝛿1…𝛿𝐾 are the 𝐾 loadings on the common factors,   

or they are the risk exposures, while 𝑓1𝑡 …𝑓𝐾𝑡

are the K-realizations of the factors at time t. 
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Explain the  Portfolio Variance

The actual variation is

𝜎2(𝑅𝑝𝑡) = 𝑤𝑝
′ 𝑉𝑤𝑝

The approximated variation is 

𝜎2( ෨𝑅𝑝𝑡) = 𝛿1
2 var ( 𝑓1𝑡) + 𝛿2

2 var ( 𝑓2𝑡) + ⋯+ 𝛿𝐾
2 var ( 𝑓𝐾𝑡)

Both quantities are quite similar.
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Explain the  Portfolio Variance

The contribution of the i-th PC to the overall portfolios 

variance is:

𝛿𝑖
2 𝑣𝑎𝑟 ( 𝑓𝑖)

σ𝑗=1
𝑘 𝛿𝑗

2 𝑣𝑎𝑟 ( 𝑓𝑗)
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Asy. PCA: What if N>T?

Then create a 𝑇 × 𝑇 matrix 𝑉 and extract 𝐾 Eigen vectors –

those Eigen vectors are the factors 

𝑉 =
1

𝑁
𝐸′ 𝐸

where
𝐸

𝑇×𝑁
= 𝑅

𝑇×𝑁
− ො𝜇

𝑇×1
⋅ 𝜄′𝑁
1×𝑁

and ො𝜇 is the T-vector of cross sectional (across- stocks) mean of 

returns.
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Other Applications

PCA can be implemented in a host of other applications.

For instance, you want to predict economic growth with many 

predictors, say 𝑀 where 𝑀 is large.

You have a panel of 𝑇 ×𝑀 predictors, where 𝑇 is the time-

series dimension.
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Other Applications

In a matrix form

�
𝑇×𝑀

=
𝑍11, 𝑍12, … , 𝑍1𝑀

⋮
𝑍𝑇1, 𝑍𝑇2, … , 𝑍𝑇𝑀

where 𝑍𝑡𝑚 is the m-the predictor realized at time 𝑡.

Professor Doron Avramov, Financial Econometrics362



Other Applications

If  𝑇 > 𝑀 compute the covariance matrix of 𝑍 – then extract 𝐾
principal components such that you summarize the 

M-dimension of the predictors with a smaller subspace of order 

𝐾 << 𝑀.

You extract 𝑤1
𝑀×1

, … , 𝑤𝐾
𝑀×1

Eigen vectors.

Professor Doron Avramov, Financial Econometrics363



Other Applications

Then you construct K predictors:

𝑍1
𝑇×1

= �
𝑇×𝑀

⋅ 𝑤1
𝑀×1

⋮
𝑍𝐾
𝑇×1

= �
𝑇×𝑀

⋅ 𝑤𝐾
𝑀×1
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What if 𝑀 > 𝑇?

If  𝑀 > 𝑇 then you extract 𝐾 Eigen vectors from the T×T  

matrix.

In this case, the 𝐾-predictors are the extracted  𝐾 Eigen 

vectors.

Be careful of a look-ahead bias in real time prediction. 
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The Number of Factors in PCA

An open question is: how many factors/Eigen vectors should be 

extracted?

Here is a good mechanism: set 𝐾max - the highest number of 

factors.

Run the following multivariate regression for 

𝐾 = 1,2, … , 𝐾max

𝑅
𝑇×𝑁

= 𝜄
𝑇×1

+ 𝛼′
1×𝑁

+ 𝐹
𝑇×𝐾

𝛽′
𝐾×𝑁

+ 𝐸
𝑇×𝑁
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The Number of Factors in PCA

Estimate first the residual covariance matrix and then the 

average of residual variances:

𝑉
𝑁×𝑁

=
1

𝑇 − 𝐾 − 1
𝐸′ 𝐸

ො𝜎2 𝐾 =
𝑡𝑟 𝑉

𝑁

where 𝑡𝑟 𝑉 is the sum of diagonal elements in 𝑉
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The Number of Factors in PCA

Compute for each chosen 𝐾

𝑃𝐶 𝐾 = ො𝜎2 𝐾 + 𝐾 ො𝜎2 𝐾max

𝑁 + 𝑇

𝑁𝑇
⋅ ln

𝑁𝑇

𝑁 + 𝑇

and pick 𝐾 which minimizes this criterion.

Notice that with more factors the first component 

(goodness of fit) diminishes but the second component 

(penalty factor) rises. There is a tradeoff here. 
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Session #9: Bayesian Econometrics
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Bayes Rule

 Let x and 𝑦 be two random variables 

 Let 𝑃 𝑥 and 𝑃 𝑦 be the two marginal probability distribution functions of x and y

 Let 𝑃 𝑥 𝑦 and 𝑃 𝑦 𝑥 denote the corresponding conditional pdfs

 Let 𝑃 𝑥, 𝑦 denote the joint pdf of x and 𝑦

 It is known from the law of total probability that the joint pdf can be decomposed as

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦 𝑥 = 𝑃 𝑦 𝑃 𝑥 𝑦

 Therefore 

𝑃 𝑦 𝑥 =
𝑃 𝑦 𝑃 𝑥 𝑦

𝑃 𝑥
= 𝑐𝑃 𝑦 𝑝 𝑥 𝑦

where c is the constant of integration (see next page)

 The Bayes Rule is described by the following proportion 

𝑃 𝑦 𝑥 ∝ 𝑃 𝑦 𝑃 𝑥 𝑦
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Bayes Rule

 Notice that the right hand side retains only factors related to y, thereby excluding 𝑃 𝑥

 𝑃 𝑥 , termed the marginal likelihood function, is

𝑃 𝑥 = න𝑃 𝑦 𝑃 𝑥 𝑦 𝑑𝑦

= න𝑃 𝑥, 𝑦 𝑑𝑦

as the conditional distribution 𝑃 𝑦 𝑥 integrates to unity.

 The marginal likelihood 𝑃 𝑥 is an essential ingredient in computing the model posterior 

probability, or the probability that a model is correct. 

 The marginal likelihood obtains by integrating out y from the joint density 𝑃 𝑥, 𝑦

 Similarly, if the joint distribution is 𝑃 𝑥, 𝑦, 𝑧 and the pdf of interest is 𝑃 𝑥, 𝑦 one integrates  

𝑃 𝑥, 𝑦, 𝑧 with respect to z.
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Bayes Rule

 The essence of Bayesian econometrics is the Bayes Rule.

 Ingredients of Bayesian econometrics are parameters underlying a given model, the sample 

data, the prior density of the parameters, the likelihood function describing the data, and the 

posterior distribution of the parameters. A predictive distribution is often involved. 

 Indeed, in the Bayesian setup parameters are stochastic while in the classical (non Bayesian) 

approach parameters are unknown constants. 

 Decision making is based on the posterior distribution of the parameters or the predictive 

distribution of the data as described below. 

 On the basis of the Bayes rule, in what follows, y stands for unknown stochastic parameters, 

x for the data, 𝑃 𝑦 𝑥 for the posetior distribution, 𝑃 𝑦 for the prior, and 𝑃 𝑥 𝑦 for the likelihood

 Then the Bayes rule describes the relation between the prior, the likelihood, and the 

posterior

𝑃 𝑦 𝑥 ∝ 𝑃 𝑦 𝑃 𝑥 𝑦

 Zellner (1971) is an excellent  reference
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Bayes Econometrics in Financial Economics 

 You observe the returns on the market index over T months: 𝑟1, … , 𝑟𝑇

 Let 𝑅: 𝑟1, … , 𝑟𝑇 ’ denote the 𝑇 × 1 vector of all return realizations

 Assume that 𝑟𝑡~𝑁 𝜇, 𝜎0
2 for 𝑡 = 1,… , 𝑇

where 

µ is a stochastic random variable denoting the mean return

𝜎0
2 is the volatility which , at this stage, is assumed to be a known constant

and returns are IID (independently and identically distributed) through time.

 By Bayes rule

𝑃 𝜇 𝑅, 𝜎0
2 ∝ 𝑃 𝜇 𝑃 𝑅 𝜇, 𝜎0

2

where 

𝑃 𝜇 𝑅, 𝜎0
2 is the posterior distribution of µ

𝑃 𝜇 is the prior distribution of µ

and 𝑃 𝑅 𝜇, 𝜎0
2 is the joint likelihood of all return realizations.
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Bayes Econometrics: Likelihood

 The likelihood function of a normally distributed return realization is given by

𝑃 𝑟𝑡 𝜇, 𝜎0
2 =

1

2𝜋𝜎0
2
𝑒𝑥𝑝 −

1

2𝜎0
2 𝑟𝑡 − 𝜇 2

 Since returns are assumed to be IID, the joint likelihood of all realized returns is

𝑃 𝑅 𝜇, 𝜎0
2 = 2𝜋𝜎0

2 −
𝑇

2𝑒𝑥𝑝 −
1

2𝜎0
2
σ𝑡=1
𝑇 𝑟𝑡 − 𝜇 2

 Notice:

σ 𝑟𝑡 − 𝜇 2 = σ 𝑟𝑡 − Ƹ𝜇 + Ƹ𝜇 − 𝜇 2

= ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

since the cross product is zero, and

ν = 𝑇 − 1

𝑠2 =
1

𝑇 − 1
 𝑟𝑡 − Ƹ𝜇 2

Ƹ𝜇 =
1

𝑇
σ𝑟𝑡
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Prior

 The prior is specified by the researcher based on economic theory, past experience, past data, 

current similar data, etc. Often, the prior is diffuse or non-informative

 For the next illustration, it is assumed that 𝑃 𝜇 ∝ 𝑐 ,that is, the prior is diffuse, non-

informative, in that it apparently conveys no information on the parameters of interest.  

 I emphasize “apparently” since innocent diffuse priors could exert substantial amount of 

information about quantities of interest which are non-linear functions of the parameters. 

 Informative priors with sound economic appeal are well perceived in financial economics. 

 For instance, Kandel and Stambaugh (1996), who study asset allocation when stock returns 

are predictable, entertain informative prior beliefs weighted against predictability. Pastor 

and Stambaugh (1999) introduce prior beliefs about expected stock returns which consider 

factor model restrictions. Avramov, Cederburg, and Kvasnakova (2015) study prior beliefs 

about predictive regression parameters which are centered around values implied by either 

prospect theory or the long run risk model of Bansal and Yaron (2004).  

 Computing posterior probabilities of competing models (e.g., Avramov (2002)) necessitates 

the use of informative priors. Here, diffuse priors won’t do the work. 
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The Posterior Distribution 

 With diffuse prior and normal likelihood, the posterior is 

𝑃 𝜇 𝑅, 𝜎0
2 ∝ 𝑒𝑥𝑝 −

1

2𝜎0
2
ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

∝ 𝑒𝑥𝑝 −
𝑇

2𝜎0
2
𝜇 − Ƹ𝜇 2

 The bottom relation follows since only factors related to µ are retained 

 The posterior distribution of the mean return is given by

𝜇|𝑅, 𝜎0
2~𝑁 Ƹ𝜇, ൗ𝜎0

2

𝑇

 In classical econometrics:

Ƹ𝜇|𝑅, 𝜎0
2~𝑁 𝜇, ൗ𝜎0

2

𝑇

 That is, in classical econometrics, the sample estimate of µ is stochastic while µ itself is an 

unknown constant.
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Informative Prior

 The prior on the mean return is often modeled as 

𝑃 𝜇 ∝ 𝜎𝑎
−
1
2𝑒𝑥𝑝 −

1

2𝜎𝑎
2
𝜇 − 𝜇𝑎

2

where 𝜇𝑎 and 𝜎𝑎 are prior parameters to be specified by the researcher

 The posterior obtains by combining the prior and the likelihood:

𝑃 𝜇 𝑅, 𝜎0
2 ∝ 𝑃 𝜇 𝑃 𝑅 𝜇, 𝜎0

2

∝ 𝑒𝑥𝑝 −
1

2

𝜇−𝜇𝑎
2

𝜎𝑎
2 +

𝑇

𝜎0
2 𝜇 − Ƹ𝜇 2

∝ 𝑒𝑥𝑝 −
1

2

𝜇−𝜇 2

𝜎2

 The bottom relation obtains by completing the square on µ

 Notice, in particular,

𝜇2

𝜎𝑎2
+

𝑇

𝜎02
𝜇2 =

𝜇2

𝜎2

1

𝜎𝑎2
+

𝑇

𝜎02
=

1

𝜎2
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The Posterior Mean

 Hence, the posterior variance of the mean is  

𝜎2 =
1

𝜎𝑎
2 +

1

ൗ𝜎0
2

𝑇

−1

= (prior precision + likelihood precision)−1

 Similarly, the posterior mean of 𝜇 is

𝜇 = 𝜎2
𝜇0
𝜎𝑎2

+
𝑇 Ƹ𝜇

𝜎02

= 𝑤1𝜇0 + 𝑤2 Ƹ𝜇

where 

𝑤1 =

1
𝜎𝑎2

1
𝜎𝑎2

+
1

ൗ𝜎02
𝑇

=
prior precision

prior precision + likelihood precision

𝑤2 = 1 − 𝑤1

 So the posterior mean of µ is the weighted average of the prior mean and the sample mean 
with weights depending on the prior and likelihood precisions, respectively.  

Professor Doron Avramov, Financial Econometrics378



What if σ is unknown? – The case of Diffuse Prior

 Bayes: 𝑃 𝜇, 𝜎 𝑅 ∝ 𝑃 𝜇, 𝜎 𝑃 𝑅 𝜇, 𝜎

 The non-informative prior is typically modeled as
𝑃 𝜇, 𝜎 ∝ 𝑃 𝜇 𝑃 𝜎

𝑃 𝜇 ∝ 𝑐

𝑃 𝜎 ∝ 𝜎−1

 Thus, the joint posterior of µ and σ is

𝑃 𝜇, 𝜎 𝑅 ∝ 𝜎− 𝑇+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

 The conditional distribution of the mean follows straightforwardly 

𝑃 𝜇 𝜎, 𝑅 is 𝑁 Ƹ𝜇, ൗ𝜎2
𝑇

 More challenging is to uncover the marginal distributions, which are obtained as

𝑃 𝜇 𝑅 = න𝑃 𝜇, 𝜎 𝑅 𝑑𝜎

𝑃 𝜎 𝑅 = න𝑃 𝜇, 𝜎 𝑅 𝑑𝜇
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Solving the Integrals: Posterior of 𝜇
 Let   Ƚ = ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

 Then,                                                 

𝑃 𝜇 𝑅 ∝ න
𝜎=0

∞

𝜎− 𝑇+1 𝑒𝑥𝑝 −
𝛼

2𝜎2
𝑑𝜎

 We do a change of variable

𝑥 =
𝛼

2𝜎2𝑑𝜎

𝑑𝑥
= −2−1

1
2𝛼

1
2𝑥−1

1
2

𝜎−𝑇+1 =
𝛼

2𝑥

−
𝑇+1
2

 Then                                    𝑃 𝜇 𝑅 ∝ 2
𝑇−2

2 𝛼−
𝑇

2 𝑥=0
∞

𝑥
𝑇

2
−1𝑒𝑥𝑝 −𝑥 𝑑𝑥

Notice                                           𝑥=0
∞

𝑥
𝑇

2
−1𝑒𝑥𝑝 −𝑥 𝑑𝑥 = Γ

𝑇

2

 Therefore,

𝑃 𝜇 𝑅 ∝ 2
𝑇−2
2 Γ

𝑇

2
𝛼−

𝑇
2

∝ ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2 −
ν+1
2

 We get 𝑡 =
𝜇−ෝ𝜇

ൗ
𝑠

𝑇

~𝑡 ν , corresponding to the Student t distribution with ν degrees of freedom.
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The Marginal Posterior of σ

 The posterior on 𝜎 𝑃 𝜎 𝑅 ∝ −𝜎 𝑇+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2 𝑑𝜇

∝ 𝜎− 𝑇+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2
 𝑒𝑥𝑝 −

𝑇

2𝜎2
𝜇 − Ƹ𝜇 2 𝑑𝜇

 Let 𝑧 =
𝑇 𝜇−ෝ𝜇

𝜎
, then 

𝑑𝑧

𝑑𝜇
= 𝑇

1

𝜎

 𝑃 𝜎 𝑅 ∝ 𝜎−𝑇𝑒𝑥𝑝 −
ν𝑠2

2𝜎2
 𝑒𝑥𝑝 − ൗ𝑧2

2 𝑑𝑧

∝ 𝜎−𝑇𝑒𝑥𝑝 −
ν𝑠2

2𝜎2

∝ 𝜎− ν+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2

which corresponds to the inverted gamma distribution with ν degrees of freedom and    
parameter s

 The explicit form (with constant of integration) of the inverted gamma is given by

𝑃 𝜎 ν, 𝑠 =
2

Γ
ν
2

ν𝑠2

2

ൗν 2

𝜎− ν+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2
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The Multiple Regression Model

 The regression model is given by

𝑦 = 𝑋𝛽 + 𝑢

where

y is a 𝑇 × 1 vector of the dependent variables

X is a 𝑇 ×𝑀 matrix with the first column being a 𝑇 × 1 vector of ones

β is an M × 1 vector containing the intercept and M-1 slope coefficients

and u is a 𝑇 × 1 vector of residuals.

 We assume that 𝑢𝑡~𝑁 0, 𝜎2 ∀ 𝑡 = 1,… , 𝑇 and IID through time

 The likelihood function is

𝑃 𝑦 𝑋, 𝛽, 𝜎 ∝ 𝜎−𝑇𝑒𝑥𝑝 −
1

2𝜎2
𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽

∝ 𝜎−𝑇𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽
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The Multiple Regression Model

where

ν = 𝑇 −𝑀

መ𝛽 = 𝑋′𝑋 −1𝑋′𝑦

𝑠2 =
1

ν
𝑦 − 𝑋 መ𝛽

′
𝑦 − 𝑋 መ𝛽

 It follows since

𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽 = 𝑦 − 𝑋 መ𝛽 − 𝑋 𝛽 − መ𝛽
′
𝑦 − 𝑋 መ𝛽 − 𝑋 𝛽 − መ𝛽

= 𝑦 − 𝑋 መ𝛽
′
𝑦 − 𝑋 መ𝛽 + 𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽

while the cross product is zero
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Assuming Diffuse Prior

 The prior is modeled as

𝑃 𝛽, 𝜎 ∝
1

𝜎

 Then the joint posterior of β and σ is

𝑃 𝛽, 𝜎 𝑦, 𝑋 ∝ 𝜎− 𝑇+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽

 The conditional posterior of β is

𝑃 𝛽 𝜎, 𝑦, 𝑋 ∝ 𝑒𝑥𝑝 −
1

2𝜎2
𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽

which obeys the multivariable normal distribution

𝑁 መ𝛽, 𝑋′𝑋 −1𝜎2

Professor Doron Avramov, Financial Econometrics384



Assuming Diffuse Prior

 What about the marginal posterior for β ?

𝑃 𝛽 𝑦, 𝑋 = න𝑃 𝛽, 𝜎 𝑦, 𝑋 𝑑𝜎

∝ ν𝑠2 + 𝛽 − መ𝛽
′
𝑋′𝑋 𝛽 − መ𝛽

− ൗ𝑇 2

which pertains to the multivariate student t with mean መ𝛽 and T-M degrees of freedom

 What about the marginal posterior for 𝜎?

𝑃 𝜎 𝑦, 𝑋 = න𝑃 𝛽, 𝜎 𝑦, 𝑋 𝑑𝛽

∝ 𝜎− ν+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2

which stands for the inverted gamma with T-M degrees of freedom and parameter s

 You can simulate the distribution of β in two steps without solving analytically the integral, 

drawing first 𝜎 from its inverted gamma distribution and then drawing from the conditional 

of β which is normal as shown earlier. 
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Bayesian Updating/Learning 

 Suppose the initial sample consists of 𝑇1 observations of 𝑋1 and 𝑦1.

 Suppose further that the posterior distribution of 𝛽, 𝜎 based on those observations is given 

by:

𝑃 𝛽, 𝜎 𝑦1, 𝑋1 ∝ 𝜎−(𝑇1+1)𝑒𝑥𝑝 −
1

2𝜎2
𝑦1 − 𝑋1𝛽 ′ 𝑦1 − 𝑋1𝛽

∝ 𝜎−(𝑇1+1)𝑒𝑥𝑝 −
1

2𝜎2
ν1𝑠1

2 + 𝛽 − መ𝛽1 ′𝑋1′𝑋1 𝛽 − መ𝛽1

where

ν1 = 𝑇1 −𝑀
መ𝛽1 = 𝑋1′𝑋1

−1𝑋1𝑦1
ν1𝑠1

2 = 𝑦1 − 𝑋1 መ𝛽1
′
𝑦1 − 𝑋1 መ𝛽1

 You now observe one additional sample 𝑋2 and 𝑦2 of length 𝑇2 observations

 The likelihood based on that sample is

𝑃 𝑦2, 𝑋2 𝛽, 𝜎 ∝ 𝜎−𝑇2𝑒𝑥𝑝 −
1

2𝜎2
𝑦2 − 𝑋2𝛽 ′ 𝑦2 − 𝑋2𝛽
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Bayesian Updating/Learning

 Combining the posterior based on the first sample (which becomes the prior for the second 

sample) and the likelihood based on the second sample yields:

𝑃 𝛽, 𝜎 𝑦1, 𝑦2, 𝑋1, 𝑋2 ∝ 𝜎− 𝑇1+𝑇2+1 𝑒𝑥𝑝 −
1

2𝜎2
𝑦1 − 𝑋1𝛽

′ 𝑦1 − 𝑋1𝛽 + 𝑦2 − 𝑋2𝛽 ′ 𝑦2 − 𝑋2𝛽

∝ 𝜎− 𝑇1+𝑇2+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝛽 − ෨𝛽

′
ϻ 𝛽 − ෨𝛽

where

ϻ = 𝑋1
′𝑋1 + 𝑋2

′𝑋2
෨𝛽 = ϻ−1 𝑋1

′𝑦1 + 𝑋2
′𝑦2

ν𝑠2 = 𝑦1 − 𝑋1 ෨𝛽
′
𝑦1 − 𝑋1 ෨𝛽 + 𝑦2 − 𝑋2 ෨𝛽

′
𝑦2 − 𝑋2 ෨𝛽

ν = 𝑇1 + 𝑇2 −𝑀

 Then the posterior distributions for β and σ follow using steps outlined earlier

 With more observations realized you follow the same updating procedure

 Notice that the same posterior would have been obtained starting with diffuse priors and 

then observing the two samples jointly Y=[𝑦1′, 𝑦2′]′ and 𝑋 = [𝑋1′, 𝑋2
′ ]′.

Professor Doron Avramov, Financial Econometrics387



The Black-Litterman way of Estimating Mean 

Returns

The well-known BL approach to estimating mean return exhibits 
some Bayesian appeal.

 It is notoriously difficult to propose good estimates for mean 
returns. 

The sample means are quite noisy – thus asset pricing models -even 
if misspecified -could give a good guidance.

To illustrate, you consider a K-factor model (factors are portfolio 
spreads) and you run the time series regression

𝑟𝑡
𝑒

𝑁×1
= 𝛼

𝑁×1
+ 𝛽1

𝑁×1
𝑓1𝑡 + 𝛽2

𝑁×1
𝑓2𝑡 +⋯+ Ⱦ𝐾

𝑁×1
𝑓𝐾𝑡 + 𝑒𝑡

𝑁×1
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Estimating Mean Returns

Then the estimated excess mean return is given by

ො𝜇𝑒 = መ𝛽1ොμ𝑓1 +
መ𝛽2 ො𝜇𝑓2 +⋯+ መ𝛽𝐾 ො𝜇𝑓𝐾

where መ𝛽1, መ𝛽2… መ𝛽𝐾 are the sample estimates of factor loadings, 

and ො𝜇𝑓1 , ො𝜇𝑓2 … ො𝜇𝑓𝐾 are the sample estimates of the factor mean 

returns.
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The BL Mean Returns

The BL approach combines a model (CAPM) with some views, 

either relative or absolute, about expected returns. 

The BL vector of mean returns is given by

μ𝐵𝐿
𝑁×1

= ɒ
1×1

σ
𝑁×𝑁

−1
+ 𝑃′

𝑁×𝐾
Ω−1

𝐾×𝐾
𝑃

𝐾×𝑁

−1

⋅ ɒ
1×1

σ
𝑁×𝑁

−1
μ𝑒𝑞
𝑁×1

+ 𝑃′
𝑁×𝐾

Ω−1

𝐾×𝐾
μ𝑣
𝐾×1
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Understanding the BL Formulation

We need to understand the essence of the following 

parameters, which characterize the mean return vector

σ, 𝜇𝑒𝑞 , 𝑃, 𝜏, Ω, 𝜇𝑣

Starting from the σ matrix – you can choose any of the 

specifications derived in the previous meetings – either the 

sample covariance matrix, or the equal correlation, or an asset 

pricing based covariance, or you could rely on the LW 

shrinkage approach – either the complex or the naïve one.
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Constructing Equilibrium Expected Returns

The 𝜇𝑒𝑞, which is the equilibrium vector of expected return, is 
constructed as follows. 

Generate 𝜔𝑀𝐾𝑇,  the 𝑁 × 1 vector denoting the weights of any 
of the 𝑁 securities in the market portfolio based on market 
capitalization.  Of course, the sum of weights must be unity.

Then, the price of risk is 𝛾 =
𝜇𝑚−𝑅𝑓

𝜎𝑚
2 where 𝜇𝑚 and 𝜎𝑚

2 are the 

expected return and variance of the market portfolio.

Later, we will justify this choice for the price of risk.
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Constructing Equilibrium Expected Returns

One could pick a range of values for 𝛾 going from 1.5 to 2.5 and 

examine performance of each choice. 

If you work with monthly observations, then switching to the 

annual frequency does not change 𝛾 as both the numerator and 

denominator are multiplied by 12.

Having at hand both 𝜔𝑀𝐾𝑇 and 𝛾, the equilibrium return vector 

is given by

𝜇𝑒𝑞 = 𝛾Σ𝜔𝑀𝐾𝑇
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Constructing Equilibrium Expected Returns

This vector is called neutral mean or equilibrium expected 

return. 

To understand why, notice that if you have a utility function 

that generates the tangency portfolio of the form

𝑤𝑇𝑃 =
σ−1 𝜇𝑒

𝜄′ σ−1 𝜇𝑒

then using 𝜇𝑒𝑞 as the vector of excess returns on the 𝑁 assets 

would deliver 𝜔𝑀𝐾𝑇 as the tangency portfolio.
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What if you Directly Apply the CAPM?

The question being – would you get the same vector of 

equilibrium mean return if you directly use the CAPM?

Yes, if…
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The CAPM based Expected Returns

Under the CAPM the vector of excess returns is given by

𝜇𝑒
𝑁×1

= 𝛽
𝑁×1

𝜇𝑚
𝑒

𝛽 =
cov 𝑟𝑒 , 𝑟𝑚

𝑒

𝜎𝑚
2 =

cov 𝑟𝑒 , 𝑟𝑒 ′𝑤𝑀𝐾𝑇

𝜎𝑚
2 =

σ𝑤𝑀𝐾𝑇

𝜎𝑚
2

𝐶𝐴𝑃𝑀: 𝜇𝑒
𝑁×1

=
σ𝑤𝑀𝐾𝑇

𝜎𝑚
2 𝜇𝑚

𝑒 = 𝛾σ𝑤𝑀𝐾𝑇
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What if you use Directly the CAPM?

Since 𝜇𝑚
𝑒 = 𝜇𝑒 ′𝑤𝑀𝐾𝑇 and 𝑟𝑚

𝑒 = 𝑟𝑒 ′𝑤𝑀𝐾𝑇

then 𝜇𝑒 =
𝜇𝑚
𝑒

𝜎𝑚
2 σ𝑤𝑀𝐾𝑇 = 𝜇𝑒𝑞
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What if you use Directly the CAPM?

So indeed, if you use (i) the sample covariance matrix, rather 

than any other specification, as well as (ii) 

𝛾 =
𝜇𝑚 − 𝑅𝑓

𝜎𝑚
2

then the BL equilibrium expected returns and expected   

returns based on the CAPM are identical.
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The 𝑃 Matrix: Absolute Views

In the BL approach the investor/econometrician forms some 

views about expected returns as described below.

𝑃 is defined as that matrix which identifies the assets involved 

in the views.

To illustrate, consider two "absolute" views only.

The first view says that stock 3 has an expected return of 5% 

while the second says that stock 5 will deliver 12%.
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The 𝑃 Matrix: Absolute Views

In general the number of views is 𝐾.

In our case 𝐾 = 2.

Then 𝑃 is a 2 × 𝑁 matrix.

The first row is all zero except for the fifth entry which is one. 

Likewise, the second row is all zero except for the fifth entry 

which is one.
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The 𝑃 Matrix: Relative Views

Let us consider now two "relative views".

Here we could incorporate market anomalies into the BL 

paradigm.

Market anomalies are cross sectional patterns in stock returns 

unexplained by the CAPM.

Example: price momentum, earnings momentum, value, size, 

accruals, credit risk, dispersion, and volatility.
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Black-Litterman: Momentum and Value Effects

Let us focus on price momentum and the value effects.

Assume that both momentum and value investing outperform. 

The first row of 𝑃 corresponds to momentum investing. 

The second row corresponds to value investing. 

Both the first and second rows contain 𝑁 elements.
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Winner, Loser, Value, and Growth Stocks

Winner stocks are the top 10% performers during the past six 
months.

Loser stocks are the bottom 10% performers during the past six 
months.

Value stocks are 10% of the stocks having the highest book-to-
market ratio.

Growth stocks are 10% of the stocks having the lowest book-to-
market ratios.
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Momentum and Value Payoffs

The momentum payoff is a return spread – return on an equal 

weighted portfolio of winner stocks minus return on equal 

weighted portfolio of loser stocks.

The value payoff is also a return spread – the return 

differential between equal weighted portfolios of value and 

growth stocks.
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Back to the 𝑃 Matrix

Suppose that the investment universe consists of 100 stocks

The first row gets the value 0.1 if the corresponding stock is a 

winner (there are 10 winners in a universe of 100 stocks). 

It gets the value -0.1 if the corresponding stock is a loser (there 

are 10 losers). 

Otherwise it gets the value zero. 

The same idea applies to value investing. 

Of course, since we have relative views here (e.g., return on 

winners minus return on losers) then the sum of the first row 

and the sum of the second row are both zero.
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Back to the 𝑃 Matrix

More generally, if N stocks establish the investment universe 

and moreover momentum and value are based on deciles (the 

return difference between the top and bottom deciles) then 

the winner stock is getting 10/𝑁
while the loser stock gets −10/𝑁.

The same applies to value versus growth stocks.

Rule: the sum of the row corresponding to absolute views is 

one, while the sum of the row corresponding to relative views is 

zero.
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Computing the 𝜇𝑣 Vector

It is the 𝐾 × 1 vector of 𝐾 views on expected returns. 

Using the absolute views above 𝜇𝑣 = 0.05,0.12 ′

Using the relative views above, the first element is the payoff 

to momentum trading strategy (sample mean); the second 

element is the payoff to value investing (sample mean).
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The Ω Matrix

Ω is a 𝐾 × 𝐾 covariance matrix expressing uncertainty about 

views. 

It is typically assumed to be diagonal. 

In the absolute views case described above Ω 1,1 denotes 

uncertainty about the first view while Ω 2,2 denotes 

uncertainty about the second view – both are at the discretion 

of the econometrician/investor.
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The Ω Matrix

In the relative views described above: Ω 1,1 denotes 

uncertainty about momentum. This could be the sample 

variance of the momentum payoff. 

Ω 2,2 denotes uncertainty about the value payoff. This is the 

could be the sample variance of the value payoff. 
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Deciding Upon 𝜏

There are many debates among professionals about the right 

value of 𝜏.

From a conceptual perspective it could be 1/𝑇 where 𝑇 denotes 

the sample size.

You can pick 𝜏 = 0.01

You can also use other values and examine how they perform 

in real-time investment decisions.
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Maximizing Sharpe Ratio

The remaining task is to run the maximization program

max
𝑤

𝑤′𝜇𝐵𝐿

𝑤′𝛴𝑤

Preferably, impose portfolio constraints, such that each of the 

𝑤 elements is bounded below by 0 and subject to some agreed 

upon upper bound, as well as the sum of the 𝑤 elements is 

equal to one.
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Extending the BL Model 

to Incorporate Sample Moments

Consider a sample of size 𝑇, e.g., 𝑇 = 60 monthly observations. 

Let us estimate the mean and the covariance (𝑉) of our 𝑁
assets based on the sample. 

Then the vector of expected return that serves as an input for 
asset allocation is given by

𝜇 = Δ−1 + (𝑉𝑠𝑎𝑚𝑝𝑙𝑒/𝑇)
−1 −1

Δ−1𝜇𝐵𝐿 + (𝑉𝑠𝑎𝑚𝑝𝑙𝑒/𝑇)
−1𝜇𝑠𝑎𝑚𝑝𝑙𝑒

where

Δ = (𝜏Σ)−1+𝑃′Ω−1𝑃 −1
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Session #10: Risk Management:

Down Side Risk Measures
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Downside Risk

Downside risk is the financial risk associated with losses.

Downside risk measures quantify the risk of losses, whereas 
volatility measures are both about the upside and downside 
outcomes.

Volatility treats symmetrically up and down moves (relative to 
the mean).

Or volatility is about the entire distribution while down side 
risk concentrates on the left tail.
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Downside Risk

Example of downside risk measures

Value at Risk (VaR)

Expected Shortfall

Semi-variance

Maximum drawdown

Downside Beta

Shortfall probability 

We will discuss below all these measures.
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Value at Risk (VaR)

The 𝑉𝑎𝑅95% says that there is a 5% chance that the realized 

return, denoted by 𝑅, will be less than-𝑉𝑎𝑅95%.

More generally, 

Pr 𝑅 ≤ −𝑉𝑎𝑅1−𝛼 = 𝛼
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Value at Risk (VaR)

−𝑉𝑎𝑅1−𝛼 − 𝜇

𝜎
= Φ−1 𝛼 ⇒ 𝑉𝑎𝑅1−𝛼 = − 𝜇 + 𝜎Φ−1 𝛼

where

Φ−1 𝛼 , the critical value, is the inverse cumulative distribution 

function of the standard normal evaluated at 𝛼.

Let 𝛼 = 5% and assume that

𝑅 ∼ 𝑁 𝜇, 𝜎2

The  critical value is Φ−1 0.05 = −1.64
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Value at Risk (VaR)

Therefore

𝑉𝑎𝑅1−𝛼 = − 𝜇 + Φ−1 𝛼 𝜎 = −𝜇 + 1.64𝜎

Check:

If 

𝑅 ∼ 𝑁 𝜇, 𝜎2

Then

Pr 𝑅 ≤ −𝑉𝑎𝑅1−𝛼 = Pr
𝑅 − 𝜇

𝜎
≤
−𝑉𝑎𝑅𝛼 − 𝜇

𝜎

= Pr
𝑅 − 𝜇

𝜎
<
𝜇 − 1.64𝜎 − 𝜇

𝜎

= Pr 𝑧 < −1.64 = Φ −1.64 = 0.05
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Example: The US Equity Premium

Suppose:

𝑅 ∼ 𝑁 0.08, 0.202

⇒ 𝑉𝑎𝑅0.95 = − 0.08 − 1.64 ⋅ 0.20 = 0.25

That is to say that we are 95% sure that the future equity 

premium won’t decline more than 25%.

If we would like to be 97.5% sure – the price is that the 

threshold loss is higher:

𝑉𝑎𝑅0.975 = − 0.08 − 1.96 ⋅ 0.20 = 0.31
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VaR of a Portfolio

Evidently, the VaR of a portfolio is not necessarily lower than 

the combination of individual VaR-s – which is apparently at 

odds with the notion of diversification. 

However, VaR is a downside risk measure while volatility (a 

risk measure) does diminish with better diversification. 
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Backtesting the VaR

The VaR requires the specification of the exact distribution and its 
parameters (e.g., mean and variance).

Typically the normal distribution is chosen.

Mean could be the sample average.

Volatility estimates could follow ARCH, GARCH, EGARCH, 
stochastic volatility, and realized volatility, all of which are 
described later in this course.

We can examine the validity of VaR using backtesting.
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Backtesting the VaR

Assume that stock returns are normally distributed with mean 

and variance that vary over time

𝑟𝑡 ∼ 𝑁 𝜇𝑡 , 𝜎𝑡
2 ∀𝑡 = 1,2,… , 𝑇

The sample is of length 𝑇.

Receipt for backtesting is as follows.

Use the first, say, sixty monthly observations to estimate the 

mean and volatility and compute the VaR.

If the return in month 61 is below the VaR set an indicator 

function 𝐼 to be equal to one; otherwise, it is zero.
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Backtesting the VaR

Repeat this process using either a rolling or recursive schemes 

and compute the fraction of time when the next period return 

is below the VaR.

If 𝛼 = 5% - only 5% of the returns should be below the 

computed VaR.

Suppose we get 5.5% of the time – is it a bad model or just a 

bad luck?
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Model Verification Based on Failure Rates

To answer that question – let us discuss another example 

which requires a similar test statistic.

Suppose that 𝑌 analysts are making predictions about the 

market direction for the upcoming year. The analysts forecast 

whether market is going to be up or down.

After the year passes you count the number of wrong analysts. 

An analyst is wrong if he/she predicts up move when the 

market is down, or predict down move when the market is up.
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Model Verification Based on Failure Rates

Suppose that the number of wrong analysts is 𝑥.

Thus, the fraction of wrong analysts is 𝑃 = 𝑥/𝑌 – this is the 

failure rate.
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The Test Statistic

The hypothesis to be tested is 

𝐻0: 𝑃 = 𝑃0

𝐻1: 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Under the null hypothesis it follows that

𝑓 𝑥 =
𝑦
𝑥

𝑃0
𝑥 1 − 𝑃0

𝑦−𝑥
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The Test Statistic

Notice that

𝐸 𝑥 = 𝑃0𝑦
𝑉𝑎𝑅 𝑥 = 𝑃0 1 − 𝑃0 𝑦

Thus

𝑍 =
𝑥 − 𝑃0𝑦

𝑃0 1 − 𝑃0 𝑦
∼ 𝑁 0,1
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Back to Backtesting VaR: A Real Life Example

In its 1998 annual report, JP Morgan explains: In 1998, daily 

revenue fell short of the downside (95%VaR) band on 20 

trading days (out of 252) or more than 5% of the time 

(252×5%=12.6). 

Is the difference just a bad luck or something more systematic? 

We can test the hypothesis that it is a bad luck.

𝐻0: 𝑥 = 12.6
𝐻1: 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

→ 𝑍 =
20 − 12.6

0.05 ⋅ 0.95 ⋅ 252
= 2.14
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Back to Backtesting VaR: A Real Life Example

Notice that you reject the null since 2.14 is higher than the 

critical value of 1.96.

That suggests that JPM should search for a better model.

They did find out that the problem was that the actual revenue 

departed from the normal distribution.
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Expected Shortfall (ES): Truncated Distribution

ES is the expected value of the loss conditional upon the event 

that the actual return is below the VaR.

The ES is formulated as

𝐸𝑆1−𝛼 = −𝐸 𝑅|𝑅 ≤ −𝑉𝑎𝑅1−𝛼
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Expected Shortfall (ES) 

and the Truncated Normal Distribution

Assume that returns are normally distributed:

𝑅 ∼ 𝑁 𝜇, 𝜎2

⇒ 𝐸𝑆1−𝛼 = −𝐸 𝑅|𝑅 ≤ 𝜇 +Φ−1 𝛼 𝜎

⇒ 𝐸𝑆1−𝛼 = −𝜇 + 𝜎
𝜙 𝛷−1 𝛼

𝛼
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Expected Shortfall (ES) 

and the Truncated Normal Distribution

where 𝜙 ∙ is the pdf of the standard normal density 

e.g. 𝜙 −1.64 = 0.103961

This formula for ES is about the expected value of a truncated 

normally distributed random variable.
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Expected Shortfall (ES) 

and the Truncated Normal Distribution

Proof:

𝑥 ∼ 𝑁 𝜇, 𝜎2

𝐸 𝑥|𝑥 ≤ −𝑉𝑎𝑅1−𝛼 = 𝜇 −
𝜎𝜑 𝜅0
𝛷 𝜅0

= 𝜇 − 𝜎
𝜑 𝛷−1 𝛼

𝛼

since

𝜅0 =
−𝑉𝑎𝑅1−𝛼 − 𝜇

𝜎
= Φ−1 𝛼
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Expected Shortfall: Example

Example:

𝜇 = 8%

𝜎 = 20%

𝐸𝑆95% = −0.08 + 0.20
𝜑 −1.64

0.05
≈ −0.08 + 0.20

0.10

0.05
= 0.32

𝐸𝑆97.5% = −0.08 + 0.20
𝜑 −1.96

0.025
≈ −0.08 + 0.20

0.06

0.25
= 0.40
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Expected Shortfall (ES) 

and the Truncated Normal Distribution

Previously, we got that the VaRs corresponding to those 

parameters are 25% and 31%.

Now the expected losses are higher, 32% and 40%.

Why?

The first lower figures (VaR) are unconditional in nature 

relying on the entire distribution.

In contrast, the higher ES figures are conditional on the 

existence of shortfall  – realized return is below the VaR.
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Expected Shortfall in Decision Making

The mean variance paradigm minimizes portfolio volatility 

subject to an expected return target.

Suppose you attempt to minimize ES instead subject to 

expected return target.
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Expected Shortfall with Normal Returns

If stock returns are normally distributed then the ES chosen 

portfolio would be identical to that based on the mean variance 

paradigm.

No need to go through optimization to prove that assertion.

Just look at the expression for ES under normality to quickly 

realize that you need to minimize the volatility of the portfolio 

subject to an expected return target.
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Target Semi Variance

Variance treats equally downside risk and upside potential.

The semi-variance, just like the VaR, looks at the downside.

The target semi-variance is defined as:

𝜆 ℎ = 𝐸 min 𝑟 − ℎ, 0 2

where ℎ is some target level.

 For instance, ℎ = 𝑅𝑓

 Unlike the variance,

𝜎2 = 𝐸 𝑟 − 𝜇 2
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Target Semi Variance

The target semi-variance:

1. Picks a target level as a reference point instead of the mean.

2. Gives weight only to negative deviations from a reference point.
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Target Semi Variance

Notice that if 𝑟 ∼ 𝑁 𝜇, 𝜎2

𝜆 ℎ = 𝜎2
ℎ − 𝜇

𝜎
𝜑

ℎ − 𝜇

𝜎
+ 𝜎2

ℎ − 𝜇

𝜎

2

+ 1 Φ
ℎ − 𝜇

𝜎

where 

𝜙 and Φ are the PDF and CDF of a 𝑁 0,1 variable, 

respectively 

Of course if ℎ = 𝜇

then 𝜆 ℎ =
𝜎2

2
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Maximum Drawdown (MD)

The MD (M) over a given investment horizon is the largest M-

month loss of all possible M-month continuous periods over the 

entire horizon.

Useful for an investor who does not know the entry/exit point 

and is concerned about the worst outcome.

It helps determine the investment risk.

Professor Doron Avramov, Financial Econometrics441



Down Size Beta

I will introduce three distinct measures of downsize beta – each 

of which is valid and captures the down side of investment 

payoffs.

Displayed are the population betas.

Taking the formulations into the sample – simply replace the 

expected value by the sample mean.
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Downside Beta

𝛽𝑖𝑚
1
=
𝐸 𝑅𝑖 − 𝑅𝑓 min 𝑅𝑚 − 𝑅𝑓 , 0

𝐸 min 𝑅𝑚 − 𝑅𝑓 , 0
2

The numerator in the equation is referred to as the co-semi-

variance of returns and is the covariance of returns below 𝑅𝑓 on 

the market portfolio with return in excess of 𝑅𝑓 on security 𝑖.

It is argued that risk is often perceived as downside deviations 

below a target level by market participants and the risk-free 

rate is a replacement for average equity market returns.
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Downside Beta

𝛽𝑖𝑚
(2)

=
𝐸 𝑅𝑖 − 𝜇𝑖 min 𝑅𝑚 − 𝜇𝑚 , 0

𝐸 min 𝑅𝑚 − 𝜇𝑚 , 0 2

where 𝜇𝑖 and 𝜇𝑚 are security 𝑖 and market average return 

respectively. 

One can modify the down side beta as follows:

𝛽𝑖𝑚
(3)

=
𝐸 min 𝑅𝑖 − 𝜇𝑖 , 0 min 𝑅𝑚 − 𝜇𝑚 , 0

𝐸 min 𝑅𝑚 − 𝜇𝑚 , 0 2
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Shortfall Probability

We now turn to understand the notion of shortfall probability.

While VaR specifies upfront the probability of undesired 

outcome and then finds the threshold level, shortfall 

probability gives a threshold level and seeks for the probability 

that the outcome is below that threshold.

We will thoroughly study the implications of shortfall 

probability for long horizon investment decisions.
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Shortfall Probability 

in Long Horizon Asset Management

Let us denote by 𝑅 the cumulative return on the investment 

over several years (say 𝑇 years).

Rather than finding the distribution of R we analyze the 

distribution of

𝑟 = ln 1 + 𝑅

which is the continuously compounded return over the 

investment horizon.
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Shortfall Probability 

in Long Horizon Asset Management

The investment value after 𝑇 years is

𝑉𝑇 = 𝑉0 1 + 𝑅1 1 + 𝑅2 … 1 + 𝑅𝑇

Dividing both sides of the equation by 𝑉0 we get
𝑉𝑇
𝑉0

= 1 + 𝑅1 1 + 𝑅2 … 1 + 𝑅𝑇

Thus

1 + 𝑅 = 1 + 𝑅1 1 + 𝑅2 … 1 + 𝑅𝑇
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Shortfall Probability 

in Long Horizon Asset Management

Taking natural log from both sides we get

𝑟 = 𝑟1 + 𝑟2 +⋯+ 𝑟𝑇

Assuming that 

𝑟𝑡 ∼
𝐼𝐼𝐷

𝑁 𝜇, 𝜎2 ∀𝑡 = 1, . . . , 𝑇

Then using properties of the normal distribution, we get

𝑟 ∼ 𝑁 𝑇𝜇, 𝑇𝜎2
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Shortfall Probability and Long Horizon

The normality assumption for log return implies the log normal 

distribution for the cumulative return – more later.

Let us understand the concept of shortfall probability.

We ask: what is the probability that the investment yields a 

return smaller than a threshold level (e.g., the risk-free rate)?

To answer this question we need to compute the value of a risk-

free investment over the 𝑇 year period.
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Shortfall Probability and Long Horizon

The value of such a risk-free investment is

𝑉𝑟𝑓 = 𝑉0 1 + 𝑅𝑓
𝑇

= 𝑉0 exp 𝑇𝑟𝑓

where 𝑟𝑓 is the continuously compounded risk free rate.
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Shortfall Probability and Long Horizon

Essentially we ask: what is the probability that 

𝑉𝑇 < 𝑉𝑟𝑓

This is equivalent to asking what is the probability that
𝑉𝑇
𝑉0

<
𝑉𝑟𝑓

𝑉0

This, in turn, is equivalent to asking what is the probability 

that

ln
𝑉𝑇
𝑉0

< ln
𝑉𝑟𝑓

𝑉0
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Shortfall Probability and Long Horizon

So we need to work out

𝑝 𝑟 < 𝑇𝑟𝑓

Subtracting 𝑇𝜇 and dividing by 𝑇𝜎 both sides of the inequality 
we get

𝑃 𝑧 < 𝑇
𝑟𝑓 − 𝜇

𝜎

We can denote this probability by

𝑆ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = Φ 𝑇
𝑟𝑓 − 𝜇

𝜎
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Shortfall Probability and Long Horizon

Typically 𝑟𝑓 < 𝜇 which means the probability diminishes the 

larger 𝑇.

Notice that the shortfall probability can be written as a 

function of the Sharpe ratio of log returns:

𝑆𝑃 = Φ − 𝑇 𝑆𝑅
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Example

Take 𝑟𝑓=0.04, μ=0.08, and σ=0.2 per year. What is the Shortfall 

Probability for investment horizons of 1, 2, 5, 10, and 20 years? 

Use the excel norm.dist function.

If T=1   SP=0.42

If T=2   SP=0.39

If T=5   SP=0.33

If T=10 SP=0.26

If T=20 SP=0.19
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Cost of Insuring against Shortfall

Let us now understand the mathematics of insuring against 

shortfall.

Without loss of generality let us assume that 

𝑉0 = 1

The investment value at time 𝑇 is a given by the random 

variable 𝑉𝑇

Professor Doron Avramov, Financial Econometrics455



Cost of Insuring against Shortfall

Once we insure against shortfall the investment value after T 

years becomes

If 𝑉𝑇 > exp 𝑇𝑟𝑓 you get 𝑉𝑇

If 𝑉𝑇 < exp 𝑇𝑟𝑓 you get exp 𝑇𝑟𝑓
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Cost of Insuring against Shortfall

So you essentially buy an insurance policy 

The policy pays 0  if 𝑉𝑇 > exp 𝑇𝑟𝑓 while it pays

exp 𝑇𝑟𝑓 − 𝑉𝑇 if 𝑉𝑇 < exp 𝑇𝑟𝑓

You ultimately need to price a contract with terminal payoff 

given by

max 0, exp 𝑇𝑟𝑓 − 𝑉𝑇
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Cost of Insuring against Shortfall

This is a European put option expiring in 𝑇 years with

1. S=1

2. 𝐾 = exp 𝑇𝑟𝑓 .

3. Risk-free rate given by 𝑟𝑓

4. Volatility given by 𝜎

5. Dividend yield given by 𝛿 = 0
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Cost of Insuring against Shortfall

The B&S formula indicates that

𝑃𝑢𝑡 = 𝐾 exp −𝑇𝑟𝑓 𝑁 −𝑑2 − 𝑆 exp −𝛿𝑇 𝑁 −𝑑1

Given the parameter outlined above the put price becomes

𝑃𝑢𝑡 = 𝑁
1

2
𝜎 𝑇 − 𝑁 −

1

2
𝜎 𝑇
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Cost of Insuring against Shortfall

To show the pricing formula of the put use the following: 

d1 =
𝑙𝑛(𝑆/𝐾)+(𝑟−𝛿+

1

2
𝜎2)𝑇

𝜎 𝑇
and  𝑑2 = 𝑑1 − 𝜎 𝑇

while 𝑁 −𝑑1 = 1 − 𝑁 𝑑1

𝑁 −𝑑2 = 1 − 𝑁 𝑑2
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Cost of Insuring against Shortfall

The B&S option-pricing model gives the current put price 𝑃 as

𝑃𝑢𝑡 = 𝑁 𝑑1 −𝑁 𝑑2

where

𝑑1 =
𝜎 𝑇

2

𝑑2 = −𝑑1

and 𝑁 𝑑 is 𝑝𝑟𝑜𝑏 𝑧 < 𝑑
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Cost of Insuring against Shortfall

For 𝜎 = 0.2 (per year) T (years) P

1 0.08

5 0.18

10 0.25

20 0.35

30 0.42

50 0.52
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Cost of Insuring against Shortfall

We have found out that the cost of the insurance increases in 𝑇, 

even when the probability of shortfall decreases in 𝑇 (as long as 

the Sharpe ratio is positive).

To get some idea about this apparently surprising outcome it 

would be essential to discuss the expected value of the 

investment payoff given the shortfall event.

It is a great opportunity to understand down side risk when 

the underlying distribution is log normal rather than normal.
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The Expected Value of Cumulative Return

Two proper questions emerge at this stage:

1. What is the expected value of cumulative return during the 

investment horizon 𝐸 𝑉𝑇 ?

2. What is the conditional expectation – conditional on shortfall

𝐸 𝑉𝑇 ∣ 𝑉𝑇 < exp 𝑇𝑟𝑓 ?

We assume, without loss of generality, that the initial invested 

wealth is one.
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The Expected Value of Cumulative Return

Notice that, given the tools we have acquired thus far, finding 

the conditional expectation is a nontrivial task since 𝑉𝑇 is not 

normally distributed – rather it is log-normally distributed 

since.

ln 𝑉𝑇 ~𝑁 𝑇𝜇, 𝑇𝜎2

Thus, let us first display some properties of the log normal 

distribution.
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The Log Normal Distribution

Suppose that x has the log normal distribution. Then the 

parameters 𝜇 and 𝜎 are, respectively, the mean and the 

standard deviation of the variable’s natural logarithm, which 

means

𝑥 = 𝑒𝜇+𝜎𝑧

where 𝑧 is a standard normal variable.

The probability density function of a log-normal distribution is
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The Log Normal Distribution

𝑓𝑥 𝑥, 𝜇, 𝜎 =
1

𝑥𝜎 2𝛱
𝑒
−
𝑙𝑛 𝑥−𝜇 2

2𝜎2 , 𝑥 > 0

If 𝑥 is a log-normally distributed variable, its expected value 

and variance are given by

𝐸 𝑥 = 𝑒𝜇+
1

2
𝜎2

𝑉𝑎𝑟 𝑥 = 𝑒𝜎
2
− 1 𝑒2𝜇+𝜎

2
= 𝑒𝜎

2
− 1 𝐸 𝑥 2
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The Mean and Variance of 𝑉𝑇

Using moments of the log normal distribution, the mean and 

variance of 𝑉𝑇 are 

𝐸(𝑉𝑇) = exp ( 𝑇𝜇 +
1

2
𝑇𝜎2)

𝑉𝑎𝑟(𝑉𝑇) = exp ( 2𝑇𝜇 + 𝑇𝜎2) exp ( 𝑇𝜎2) − 1

Next, we aim to find the conditional mean.
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The Mean of a Variable 

that has the Truncated Log Normal Distribution

ത𝐹 c E(x|x > c) = න
c

∞

x
1

x𝜎 2𝜋
𝑒
−
1
2
𝑙𝑛 𝑥 −𝜇

𝜎

2

𝑑𝑥

where 1/ ത𝐹 c is a normalizing constant.

Let us make change of variables:
𝑙𝑛(x) − 𝜇

𝜎
= t ⇒ x = et𝜎+𝜇 and dx = 𝜎et𝜎+𝜇dt
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The Mean of a Variable 

that has the Truncated Log Normal Distribution

then:

ത𝐹 c E x x > c = න
𝑙𝑛 𝑐 −𝜇

𝜎

∞ 1

2𝛱
𝑒−

1
2
𝑡2𝜎𝑒𝑡𝜎+𝜇𝑑𝑡 =

=
1

2𝛱
න
𝑙𝑛 𝑐 −𝜇

𝜎

∞

𝑒−
1
2𝑡

2+𝑡𝜎+𝜇 𝑑𝑡

=
1

2𝛱
න
𝑙𝑛 𝑐 −𝜇

𝜎

∞

𝑒−
1
2 𝑡−𝜎 2+ 𝜇+0.5𝜎2 𝑑𝑡

= 𝑒 𝜇+0.5𝜎2
1

2𝛱
න
𝑙𝑛 𝑐 −𝜇

𝜎

∞

𝑒−
1
2 𝑡−𝜎 2

𝑑𝑡
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The Mean of a Variable 

that has the Truncated Log Normal Distribution

Let us make another change of variables:

v = t − 𝜎 ⇒ dv = dt

ത𝐹 c E(x|x > c) = 𝑒 𝜇+0.5𝜎2
1

2𝛱
න
𝑙𝑛 𝑐 −𝜇

𝜎 −𝜎

∞

𝑒−
1
2𝑣

2
𝑑𝑣

The integral is the complement CDF of the standard normal 

random variable.
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The Mean of a Variable 

that has the Truncated Log Normal Distribution

Thus, the formula is reduced to:

ሜF c ELN x x > c = 𝑒 𝜇+0.5𝜎2 1 − Φ
𝑙𝑛 𝑐 − 𝜇 − 𝜎2

𝜎

= 𝑒 𝜇+0.5𝜎2 Φ
− 𝑙𝑛 𝑐 + 𝜇 + 𝜎2

𝜎
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The Mean of a Variable 

that has the Truncated Log Normal Distribution

 In the same way we can show that:

ത𝐹 c ⋅ ELN(x|x ≤ c) = න
0

𝑐

𝑥
1

𝑥𝜎 ⋅ 2𝛱
𝑒
−
1
2
𝑙𝑛 𝑥 −𝜇

𝜎

2

𝑑𝑥 = න
−∞

𝑙𝑛 𝑐 −𝜇
𝜎

𝑒−
1
2
𝑡2+𝑡𝜎+𝜇 𝑑𝑡

= 𝑒 𝜇+0.5𝜎2
1

2𝛱
න
−∞

𝑙𝑛 𝑐 −𝜇
𝜎

𝑒−
1
2 𝑡−𝜎 2

𝑑𝑡 = 𝑒 𝜇+0.5𝜎2
1

2𝛱
න
−∞

𝑙𝑛 𝑐 −𝜇
𝜎 −𝜎

𝑒−
1
2𝑣

2
𝑑𝑣

= 𝑒 𝜇+0.5𝜎2 ⋅ Φ
𝑙𝑛 𝑐 − 𝜇 − 𝜎2

𝜎
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Punch Lines

ELN(x|x > c) = ELN(x) ⋅

𝛷
− 𝑙𝑛 𝑐 + 𝜇 + 𝜎2

𝜎

𝛷
− 𝑙𝑛 𝑐 + 𝜇

𝜎

ELN(x|x ≤ c) = ELN(x) ⋅

𝛷
𝑙𝑛 𝑐 − 𝜇 − 𝜎2

𝜎

𝛷
𝑙𝑛 𝑐 − 𝜇

𝜎
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The Expected Value given Shortfall

The expected value given shortfall is 

𝐸 𝑉𝑇|𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 = 𝑒
𝑇𝜇+

1
2
𝑇𝜎2

⋅

𝛷
𝑇𝑟𝑓 − 𝑇𝜇 − 𝑇𝜎2

𝑇𝜎

𝛷
𝑇𝑟𝑓 − 𝑇𝜇

𝑇𝜎

or

𝐸 𝑉𝑇|𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 = 𝑒
𝑇𝜇+

1
2𝑇𝜎

2

⋅
𝛷 − 𝑇 𝑆𝑅 + 𝜎

𝛷 − 𝑇 ⋅ 𝑆𝑅
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The Expected Value given Shortfall

Thus,

𝑃𝑟𝑜𝑏 𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 × 𝐸 𝑉𝑇|𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙 = 𝐸[𝑉𝑡]Φ − 𝑇 𝑆𝑅 + 𝜎

Which means that the shortfall probability times the expected 

value given shortfall is equal to the unconditional expected 

value times a factor smaller than one.

That factor diminishes with higher Sharpe ratio and/or with 

higher volatility.
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The Horizon Effect

Numerical example

Let’s take 𝑟𝑓 = 5%, 𝜎 = 10% . For different values of 𝜇 > 𝑟𝑓 the 

conditional expectation over horizon 𝑇 looks like:
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The Horizon Effect

Previously we have shown that even when the shortfall 

probability diminishes with the investment horizon, the cost of 

insuring against shortfall rises.

Notice that the insured amount is

exp 𝑇𝑟𝑓 − 𝑉𝑇

The expected value of that insured amount given shortfall 

sharply rises with the investment horizon, which explains the 

increasing value of the put option. 
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Value at Risk with Log Normal Distribution

We have analyzed VaR when quantities of interest are 

normally distributed.

It is challenging to extend the analysis to the case wherein the 

log normal distribution is considered.

Analytics follow.
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VaR with Log Normal Distribution

We are looking for threshold, VaR, such that

𝛼 = Pr 𝑉𝑇 ∣ 𝑉0 < 𝑉𝑎𝑟 ∣ 𝑉0 = 𝐶𝐷𝐹 𝑉𝑎𝑅 ∣ 𝑉0

Then in order to find the threshold we need to calculate  

quantile of lognormal distribution:

𝑉𝑎𝑅 = 𝑉0 ⋅ 𝐶𝐷𝐹
−1 𝛼; 𝑇𝜇, 𝑇𝜎2

= 𝑉0 ⋅ 𝑒
𝑇𝜇+ 𝑇𝜎⋅Φ−1 𝛼

where Φ−1 𝛼 is as defined earlier. 
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VaR with Log Normal Distribution

Specifically,

𝛼 = Pr 𝑉𝑇 ∣ 𝑉0< 𝑉𝑎𝑟 ∣ 𝑉0 = Pr ln 𝑉𝑇 ∣ 𝑉0 < ln 𝑉𝑎𝑅 ∣ 𝑉0

= Pr
𝑙𝑛 𝑉𝑇 ∣ 𝑉0 − 𝑇𝜇

𝑇𝜎
<
𝑙𝑛 𝑉𝑎𝑅 ∣ 𝑉0 − 𝑇𝜇

𝑇𝜎

= Φ
𝑙𝑛 𝑉𝑎𝑅 ∣ 𝑉0 − 𝑇𝜇

𝑇𝜎
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VaR with Log Normal Distribution

and then

𝑙𝑛 𝑉𝑎𝑅 ∣ 𝑉0 − 𝑇𝜇

𝑇𝜎
= Φ−1 𝛼

𝑉𝑎𝑅 = 𝑉0𝑒
𝑇𝜇+ 𝑇𝜎⋅Φ−1 𝛼

That is to say that there is a 𝛼% probability that the 

investment value at time T will be below that VaR.
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VaR with 𝑡 Distribution

Suppose now that stock returns have a 𝑡 distribution with 𝜈
degrees of freedom and expected return and volatility given by 

μ and 𝜎

The pdf of stock return is formulated as

𝑓 𝑥|𝜇, 𝜎, 𝑣 =
1

𝜎 𝑣 ⋅ 𝐵 𝑣/2,1/2
⋅ 1 +

(𝑥 − 𝜇)2

𝑣

−
𝑣+1
2
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Partial Expectation

 Let 𝑌 =
𝑥−𝜇

𝜎
-standardized r.v distribution with 𝐹 𝑥|0,1, 𝑣 .

Than, 

𝑃𝐸 𝑋|𝑋 ≤ 𝑧 = න
−∞

𝑧

𝑥 ⋅ 𝑓 𝑥, 𝑣 𝑑𝑥 = න
−∞

𝑧 1

𝑣 ⋅ 𝐵 𝑣/2,1/2
⋅ 1 +

𝑥2

𝑣

−
𝑣+1
2

𝑑𝑥 =

=
1

𝑣 ⋅ 𝐵 𝑣/2,1/2
⋅

−𝑣

𝑣 − 1
1 +

𝑥2

𝑣

−
𝑣−1
2

|−∞
𝑧 =

1

𝑣 ⋅ 𝐵 𝑣/2,1/2
⋅
−𝑣

𝑣 − 1
1 +

𝑧2

𝑣

−
𝑣+1
2 +1

= −𝑓 𝑧, 𝑣 ⋅
𝑣 + 𝑧2

𝑣 − 1
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Partial Expectation

And thus

𝐸𝑆𝑇 𝛼 = 𝜇 − 𝜎
𝑓 𝑞1−𝛼 , 𝑣

𝑞1−𝛼
⋅
𝑣 + 𝑞1−𝛼

2

𝑣 − 1

Where 𝑞𝑥 = 𝑉𝑎𝑅 1 − 𝑥 is 𝑥 quantile of 𝑇 ∼ 𝑡𝑛
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Long Run Return 

when Periodic Return has the 𝑡-Distribution

The sum of independent t-distributed random variables is not 

𝑡-distributed. So we have no nice formula for expected shortfall 

in the long run. However,  it can be approximated by normal 

with zero mean variance:

𝑟 ∼
𝑎𝑝𝑝𝑟𝑜𝑥.

𝑁 𝜇,
𝑣

𝑣 − 2
𝜎 𝑓𝑜𝑟 𝑣 ≥ 2
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Long Run Return 

when Periodic Return has the 𝑡-Distribution

Approximation makes sense for large v’s when 𝑡 coincides with 

normal distribution.

However, simulation studies show that for sufficient number of 

periods this approximation works well enough.
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Long Run Return 

when Periodic Return has the 𝑡-Distribution

However simulations shows that for sufficient number of 

periods this approximation works well enough.

Let 𝜇𝑡 = 0.01; 𝜎𝑡 = 0.05. The next graphs show normal curve fit 

to the sum of 𝑡 r.v.s (over 𝑇 periods); sample estimates vs. 

predicted parameters are includes
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Long Run Return 

when Periodic Return has the 𝑡-Distribution
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Long Run Return 

when Periodic Return has the 𝑡-Distribution
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when Periodic Return has the 𝑡-Distribution
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Session #11 (part a): Testing the Black 

Scholes Formula
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Option Pricing

The B&S call Option price is given by 

C(S, K, 𝜎, r, T, 𝛿) = Se−𝛿TN(d1) − Ke−rTN(d2)

The put Option price is

P(S, K, 𝜎, r, T, 𝛿) = Ke−rTN(−d2) − Se−𝛿TN(−d1)

where d1 =
𝑙𝑛(𝑆/𝐾)+(𝑟−𝛿+

1

2
𝜎2)𝑇

𝜎 𝑇
and d2 = d1 − 𝜎 T
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Option Pricing

There are six inputs required:

S - Current price of the underlying asset.

K - Exercise/Strike price.

r - Continuously compounded risk-free rate.

T - Time to expiration.

𝜎 - Volatility.

𝛿 - Continuously compounded dividend yield.
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The B&S Economy

The B&S  formula is derived under several assumptions:

The stock price follows a geometric Brownian motion (continuous path 

and continuous time).

The dividend is paid continuously and uniformly over time.

The interest rate is constant over time.
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The B&S Economy

The underlying asset volatility is constant over time and it 

does not change with the option maturity or with the strike 

price.

You can short sell or long any amount of the stock.

You can borrow and lend in the risk-free rate.

There are no transactions costs.
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Testing the B&S Formula

Mark Rubinstein analyzes call options that are deep out of the 
money.

He considers matched pairs: options with the same striking 
price, on the same underlying asset (stock), but with different 
time to maturity (expiration date).

He examines overall 373 pairs.

If B&S is correct then the implied volatility (IV) of the matched 
pair is equal. Time to maturity plays no role.
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Testing the B&S Formula

However, Rubinstein finds that our of the 373 examined 

matched pairs – shorter maturity options had higher IV.

Under the null – the expected value of such an outcome is 

373/2=186.5.

Is the difference statistically significant?
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The Failure Rate based Test Statistic

Use the failure rate test developed earlier to show that time to 

expiration does play a major role.

That is to say that the constant volatility assumption is 

strongly violated in the data.
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The Volatility Smile for Foreign Currency Options
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Implied Distribution for Foreign Currency Options

Both tails are heavier than the lognormal distribution.

It is also “more peaked” than the lognormal distribution.
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The Volatility Smile for Equity Options
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Implied Distribution for Equity Options

The left tail is heavier and the right tail is less heavy than the 

lognormal distribution.
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Ways of Characterizing the Volatility Smiles

Plot implied volatility against 𝐾/𝑆0 (The volatility smile is then 

more stable).

Plot implied volatility against 𝐾/𝐹0 (Traders usually define an 

option as at-the-money when 𝐾 equals the forward price, 𝐹0, 

not when it equals the spot price 𝑆0).

Plot implied volatility against delta of the option (This 

approach allows the volatility smile to be applied to some non-

standard options. At-the money is defined as a call with a delta 

of 0.5 or a put with a delta of −0.5. These are referred to as 50-

delta options).
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Possible Causes of Volatility Smile

Asset price exhibits jumps rather than continuous changes.

Volatility for asset price is stochastic:

In the case of an exchange rate volatility is not heavily correlated with 

the exchange rate. The effect of a stochastic volatility is to create a 

symmetrical smile.

In the case of equities volatility is negatively related to stock prices 

because of the impact of leverage. This is   consistent with the skew 

that is observed in practice.
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Volatility Term Structure

In addition to calculating a volatility smile, traders also 

calculate a volatility term structure.

This shows the variation of implied volatility with the time to 

maturity of the option.

The volatility term structure tends to be downward sloping 

when volatility is high and upward sloping when it is low
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Example of a Volatility Surface

0.90 0.95 1.00 1.05 1.10

1 month 14.2 13.0 12.0 13.1 14.5

3 months 14.0 13.0 12.0 13.1 14.2

6 months 14.1 13.3 12.5 13.4 14.2

1 year 14.7 14.0 13.5 14.0 14.8

2 years 15.0 14.4 14.0 14.5 15.1

5 years 14.8 14.6 14.4 14.7 15.0

Τ𝐾 𝑆0
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Session #11 (part b): Time Varying Volatility 

Models
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Volatility Models

We describe several volatility models commonly applied in 

analyzing quantities of interest in finance and economics:

ARCH

GARCH

EGARCH

Stochastic Volatility 

Realized and implied Volatility
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Volatility Models

All such models attempt to capture the empirical evidence that 

volatility is time varying (rather than constant) as well as 

persistent.

The EGARCH captures the asymmetric response of volatility to 

advancing versus diminishing markets.

In particular, volatility tends to be higher (lower) during down 

(up) markets.
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ARCH(1)

𝑟𝑡 = 𝜇 + 𝜀𝑡

𝜀𝑡 = 𝜎𝑡𝑒𝑡 where 𝑒𝑡~𝑁 0,1

𝜎𝑡
2 = 𝑤 + 𝛼𝜀𝑡−1

2

𝐸𝑡−1 𝜀𝑡
2 = 𝐸𝑡−1 𝜎𝑡

2𝑒𝑡
2 = 𝜎𝑡

2

so

𝜎𝑡
2 is the conditional variance.
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ARCH(1)

𝐸 𝜀𝑡−1
2 = ത𝜎2 is the unconditional variance.

𝐸 𝜎𝑡
2 = 𝐸 𝑤 + 𝛼𝜀𝑡−1

2

= 𝑤 + 𝛼𝐸 𝜀𝑡−1
2

= 𝑤 + 𝛼𝐸 𝜎𝑡−1
2 𝐸 𝑒𝑡−1

2

= 𝑤 + 𝛼𝐸 𝜎𝑡−1
2

⇒ ǉ𝜎2 = 𝐸 𝜎𝑡
2 = 𝐸 𝜎𝑡−1

2 = 𝐸 𝜎𝑡−2
2

𝐸 𝜎𝑡
2 =

𝑤

1−𝛼
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ARCH(1)

Fat tail?

𝜇4 =
𝐸 𝜀𝑡

4

𝐸 𝜀𝑡
2 2 =

𝐸 𝐸𝑡−1 𝜀𝑡
4

𝐸 𝐸𝑡−1 𝑒𝑡
2𝜎𝑡

2 2

=
𝐸 𝐸𝑡−1 𝑒𝑡

4 𝜎𝑡
4

𝐸 𝐸𝑡−1 𝑒𝑡
2𝜎𝑡

2 2 =
𝐸 3𝜎𝑡

4

𝐸 𝜎𝑡
2

2

= 3
𝐸 𝜎𝑡

4

𝐸 𝜎𝑡
2

2 ≥ 3
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ARCH(1)

The last step follows because:

𝑉𝑎𝑟 𝜀𝑡
2 = 𝐸 𝜀𝑡

4 − 𝐸 𝜀𝑡
2 2

≥ 0

so

𝐸 𝜀𝑡
4

𝐸 𝜀𝑡
2 2 ≥ 1

Yes – fat tail!
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GARCH(1,1)

𝑟𝑡 = 𝜇 + 𝜀𝑡

𝜀𝑡 = 𝜎𝑡𝑒𝑡 where 𝑒𝑡~𝑁 0,1

𝜎𝑡
2 = 𝑤 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2

𝐸 𝜎𝑡
2 = 𝑤 + 𝛼𝐸 𝜀𝑡−1

2 + 𝛽𝐸 𝜎𝑡−1
2
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GARCH(1,1)

ത𝜎2 = 𝑤 + 𝛼 ത𝜎2 + 𝛽 ത𝜎2

ത𝜎2 =
𝑤

1−𝛼−𝛽

𝜇4 =
3 1+𝛼+𝛽 1−𝛼−𝛽

1−2𝛼𝛽−3𝛼2−𝛽2
> 3
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EGARCH

𝑟𝑡 = 𝜇 + 𝜀𝑡 where 𝑒𝑡~𝑁 0,1

𝜀𝑡 = 𝜎𝑡𝑒𝑡

ln 𝜎𝑡
2 = 𝑤 + 𝛼

𝜀𝑡−1

𝜎𝑡−1
−

2

𝜋
− 𝛾

𝜀𝑡−1

𝜎𝑡−1
+ 𝛽 ln 𝜎𝑡−1

2

The first component 
𝜀𝑡−1

𝜎𝑡−1
−

2

𝜋
= 𝑒𝑡−1 −

2

𝜋

is the absolute value of a normally distribution variable 𝑒𝑡−1
minus its expectation.
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EGARCH

The second component is 𝛾
𝜀𝑡−1

𝜎𝑡−1
= 𝛾𝑒𝑡−1

Notice that the two normal shocks behave differently.

The first produces a symmetric rise in the log conditional 

variance.

The second creates an asymmetric effect, in that, the log 

conditional variance rises following a negative shock.
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EGARCH

More formally if 𝑒𝑡−1 < 0 then the log conditional variance rises 

by 𝛼 + 𝛾.

If 𝑒𝑡−1 > 0 then the log conditional variance rises by 𝛼 − 𝛾

This produces the asymmetric volatility effect – volatility is 

higher during down market and lower during up market.
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Stochastic Volatility (SV)

There is a variety of SV models.

A popular one follows the dynamics               

𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝜀𝑡 where 𝜀𝑡 ∼ 𝑁 0,1

ln 𝜎𝑡 = 𝛾0 + 𝛾1 ln 𝜎𝑡−1 + 𝜂𝑡𝑣𝑡 where 𝑣𝑡~𝑁 0,1

cov 𝑣𝑡 , 𝜀𝑡 = 0

Notice, that unlike ARCH, GARCH, and EGARCH, here the 

volatility itself has a stochastic component.
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Realized Volatility

The realized volatility (RV) is a very tractable way to measure 

volatility.

It essentially requires no parametric modeling approach.

Suppose you observe daily observations within a trading month 

on the market portfolio.

RV is the average of the squared daily returns within that 

month.
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Realized Volatility

Of course, volatility varies on the monthly frequency but it is 

assumed to be constant within the days of that particular 

month.

If you observe intra-day returns (available for large US firms) 

then daily RV is the sum of squared of five minute returns.

You can use AR(1) to model log realized variance and then 

predict future values. 
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Implied Volatility (IV)

The B&S call Option price is given by

C(S, K, 𝜎, r, T, 𝛿) = Se−𝛿TN(d1) − Ke−rTN(d2)

The put Option price is

P(S, K, 𝜎, r, T, 𝛿) = Ke−rTN(−d2) − Se−𝛿TN(−d1)

Where d1 =
𝑙𝑛(𝑆/𝐾)+(𝑟−𝛿+

1

2
𝜎2)𝑇

𝜎 𝑇
and d2 = d1 − 𝜎 T
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Implied Volatility (IV)

In the traditional option pricing practice one inserts into the 

formula all the six parameters, i.e., the stock price, the strike 

price, the time to expiration, the cc risk-free rate, the cc 

dividend yield, and stock return volatility.

IV is that volatility that if inserted into the B&S formula would 

yield the market price of the call or put option.

As noted earlier, IV in not constant across maturities or across 

strike prices.
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Session #11 (part c): Stock Return 

Predictability, Model Selection, and Model 

Combination
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Return Predictability

If log returns are IID – there is no way you can deliver better 

prediction for stock return than the current mean return.

That is, if 𝑟𝑡 = 𝜇 + 𝜀𝑡 where  𝜀𝑡~
𝑖𝑖𝑑

= 𝑁 0, 𝜎2

𝐸 𝑟𝑡+1|𝐼𝑡 = 𝜇

𝑉𝑎𝑟 𝑟𝑡+1|𝐼𝑡 = 𝜎2

where 𝑟𝑡 is the continuously compounded return and 𝐼𝑡 is the 

set of information available at time 𝑡.
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Return Predictability

Also note that the variance of a two-period return 𝑟𝑡 + 𝑟𝑡+1 is 

equal to

𝑉𝑎𝑟 𝑟𝑡 + 𝑉𝑎𝑟 𝑟𝑡+1 + 2 cov 𝑟𝑡 , 𝑟𝑡+1 = 2𝜎2

That is, variance grows linearly with the investment horizon, 

while volatility grows in the rate square root.
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Variance Ratio Tests

However, is it really the case?

Perhaps stock returns are auto-correlated, or 

cov 𝑟𝑡 , 𝑟𝑡+1 ≠ 0

then:

𝑉𝑅2 =
𝑉𝑎𝑟 𝑟𝑡 + 𝑟𝑡+1

2𝑉𝑎𝑟 𝑟𝑡
=
𝑉𝑎𝑟 𝑟𝑡 + 𝑉𝑎𝑟 𝑟𝑡+1 + 2 𝑐𝑜𝑣 𝑟𝑡 , 𝑟𝑡+1

2𝑉𝑎𝑟 𝑟𝑡

= 1 +
𝑐𝑜𝑣 𝑟𝑡,𝑟𝑡+1

𝜎 𝑟𝑡 𝜎 𝑟𝑡+1
= 1 + 𝜌
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Variance Ratio Tests

Test: 𝐻0: 𝜌 = 0

𝐻1: 𝜌 ≠ 0

The test statistic is

𝑇 𝑉𝑅2 − 1 →
𝑑
𝑁 0,1
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Variance Ratio Tests

More generally,

𝑉𝑅𝑔 =
𝑉𝑎𝑟 𝑟𝑡 + 𝑟𝑡+1 +⋯+ 𝑟𝑡+𝑔

𝑔 + 1 𝑉𝑎𝑟 𝑟𝑡
= 1 + 2

𝑠=1

𝑔

1 −
𝑠

𝑔 + 1
𝜌𝑠

𝐻0: 𝑉𝑅𝑔 = 1 no auto correlation

𝐻1: 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Variance Ratios

Test statistic:

𝑇 𝑉𝑅𝑔 − 1 →
𝑑
𝑁 0,

𝑠+1

𝑔−1

4 1 −
𝑠

𝑔

2

e.g. 𝑔 = 2

𝑇 𝑉𝑅2 − 1 →
𝑑
𝑁 0,1

𝑔 = 3

𝑇 𝑉𝑅3 − 1 →
𝑑
𝑁 0,

20

9
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Predictive Variables

In the previous specification, we used lagged returns to 

forecast future returns or future volatility.

You can use a bunch of other predictive variables, such as:

The term spread.

The default spread.

Inflation.

The aggregate dividend yield
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Predictive Variables

The aggregate book-to-market ratio.

The market volatility.

The market illiquidity
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Predictive Regressions

To examine whether stock returns are predictable, we can run 

a predictive regression.

This is the regression of future excess log or gross return on 

predictive variables.

It is formulated as:

𝑟𝑡+1 = 𝑎 + 𝑏1𝑧1𝑡 + 𝑏2𝑧2𝑡 +⋯+ 𝑏𝑀𝑧𝑀𝑡 + 𝜀𝑡+1
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Predictive Regressions

To examine whether either of the macro variables can predict 

future returns  test whether either of the slope coefficients is 

different from zero.

Use the t-statistic or  F-statistic for the regression R-squared.

There is a small sample bias if (i) the predictive variables are 

highly persistent, (ii) the contemporaneous correlation between 

the predictive regression residual and the innovation of the 

predictor is high, or (iii) the sample is small.
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Long Horizon Predictive Regressions

𝑟𝑡+1,𝑡+𝐾 = 𝛼 + 𝑏′𝑧𝑡 + 𝜀𝑡+1,𝑡+𝐾

The dependent variable is the sum of log excess return over the 

investment horizon, which is 𝐾 periods.

Since the residuals are auto correlated compute the standard 

errors for the slope coefficient accounting for serial correlation 

and often for heteroscedasticity.

For instance you can use the Newey-West correction.
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Newey-West Correction

Rewriting the long horizon regression

𝑟𝑡+1,𝑡+𝐾 = 𝑥𝑡
′𝛽 + 𝜀𝑡+1,𝑡+𝐾

𝑥𝑡
′ = 1, 𝑧𝑡

′

𝛽′ = 𝑎, 𝑏′
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Newey-West Correction

The estimation error of the regression coefficient is represented 

by 𝑉𝑎𝑟 መ𝛽

𝑉𝑎𝑟 መ𝛽 = 𝑋′𝑋 −1 መ𝑆

where መ𝑆 is the Newey-West given by serially correlated 

adjusted estimator

መ𝑆 = 

𝑗=−𝐾

𝐾
𝐾 − 𝑗

𝐾
⋅
1

𝑇


𝑡=𝑗+1

𝑇

𝜀𝑡 𝜀𝑡−𝑗
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Long Horizon Predictive Regressions

Tradeoff:

Higher 𝐾 – better coverage of dependence.

But we loose degrees of freedom.

Feasible solution:

𝐾∞𝑇
1
3
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Long Horizon Predictive Regressions

E.g.    K=1:

𝑗 = −1, 𝑗 = 0, 𝑗 = 1

መ𝑆 =
1

𝑇
σ𝑡=1
𝑇 𝜀𝑡

2

Here we have no serial correlation.
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Long Horizon Predictive Regressions

E.g.    K=2:

𝑗 = −2, 𝑗 = −1, 𝑗 = 0, 𝑗 = 1, 𝑗 = 2

መ𝑆 =
1

2
⋅
1

𝑇


𝑡=1

𝑇−1

𝜀𝑡 𝜀𝑡+1 +
1

𝑇


𝑡=−1

𝑇

𝜀𝑡
2 +

1

2
⋅
1

𝑇


𝑡=2

𝑇

𝜀𝑡 𝜀𝑡−1

=
1

𝑇


𝑡=1

𝑇

𝜀𝑡
2 +

𝑡=1

𝑇−1

𝜀𝑡 𝜀𝑡+1
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In the Presence of Heteroskedasticity

𝑉𝑎𝑟 መ𝛽 =
1

𝑇

1

𝑇


𝑡=1

𝑇

𝑥𝑡 𝑥𝑡
′

−1

መ𝑆
1

𝑇


𝑡=1

𝑇

𝑥𝑡 𝑥𝑡
′

−1

መ𝑆 = 

𝑗=−𝐾

𝐾
𝐾 − 𝑗

𝐾
⋅
1

𝑇


𝑡=1

𝑇−𝐾+1

⋅ 𝜀𝑡𝑥𝑡𝑥𝑡−𝑗
′𝜀𝑡−𝑗
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Out of Sample Predictability

There is ample evidence of in-sample predictability, but little 

evidence of out-of-sample predictability.

Consider the two specifications for the stock return evolution

𝑀1: 𝑟𝑡 = 𝑎 + 𝑏𝑧𝑡−1 + 𝜀𝑡
𝑀2: 𝑟𝑡 = 𝜇 + 𝜀𝑡

Which one dominates? If 𝑀1 then there is predictability 

otherwise, there is no.
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Out of Sample Predictability

One way to test predictability is to compute the out of sample 

𝑅2: 

𝑅𝑂𝑂𝑆
2 = 1 −

σ𝑡=1
𝑇 𝑟𝑡 − Ƹ𝑟𝑡,1

2

σ𝑡=1
𝑇 𝑟𝑡 − ǉ𝑟𝑡

2

Where Ƹ𝑟𝑡,1 is the return forecast assuming the presence of 

predictability, and ҧ𝑟𝑡 is the sample mean (no predictability).

Can compute the MSE (Mean Square Error) for both models.
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Model Selection

When 𝑀 variable are potential candidates for predicting stock 

returns there are 2𝑀 linear combinations of predictive models.

In the extreme, the model that drops all predictors is the no-

predictability or IID model.

The one that retains all predictors is the all inclusive model.

Which model to use?

One idea (bad) is to implement model selection criteria.
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Model Selection Criteria

𝐴𝐼𝐶 = 2𝑚 − 2 ln 𝐿

where 𝐿 is the maximized value of the likelihood function.

𝐵𝐼𝐶 = 𝑚 ln 𝑇 − 2 ln 𝐿

ത𝑅2 = 1 − 1 − 𝑅2
𝑇−1

𝑇−𝑚−1
= 𝑅2 − 1 − 𝑅2

𝑚

𝑇−𝑚−1

Bayesian posterior probability
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Model Selection

Notice that all criteria are a combination of goodness of fit and 

a penalty factor.

You choose only one model and disregard all others.

Model selection criteria have been shown to exhibit very poor 

out of sample predictive power.
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Model Combination

The other approach is to combine models.

Bayesian model averaging (BMA) computes posterior 

probabilities for each model then it uses the posterior 

probabilities as weights to compute the weighted model.

There are more naive combinations.

Such combination methods produce quite robust predictors not 

only in sample but also out of sample. 
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